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Abstract. In various aspects of human life, animals are widely exploited as a 

labor, consumption, pet, and for research. While animal use contributes 

favorably to various sectors of life, the number of animal populations allows 

the farm to expand to a larger scale, increasing the scale of the operation. This 

has made it increasingly difficult for the monitoring of the farm to do so when 

animals roam the complex areas, courtyards, open fields, or farmland in search 

of food. As for the animals that are hard to monitor are cats, goats, chickens, 

and cows. Thus, the development of animal detection technologies using deep 

learning to make it easier to monitor animals as they prowl for food. In the 

study, four types of animal animals, chickens, cats, goats, and cows use deep 

learning, yolov8 (You Only Look Once version 8) that is known for accuracy 

in identifying objects. The stages taken on this study include data collection, 

data annotations, data division, augmentation, data training, and results 

evaluation. Excellent training results from 125 epoch on the 85% data share 

scheme training, 15% of validation data, and 5% of data testing with datasets 

at 11242 pictures achieve an accuracy rate of 99.5%, precision by 79.4%, recall 

by 79.9%, and f1-score by 76.6%. 

 

Keywords: Immediately Animals Detection, Deep Learning, YOLOv8, Data 

Augmentation, Computer Vision. 

 

 

Introduction  

In various aspects of human life, animals are widely exploited as Labour, consumption, domesticated, 

and for research [1]. As mankind's need for animal resources grows, the animal population in Indonesia 

is also growing. According to [2] Indonesia's population of farm animals in 2022 is estimated to have 

been 17.75 million cattle, while goats are estimated to have been 18.55 million, and chickens estimated 

at 3.8 billion. In addition, in Indonesia there are pets, one of which is a 129% increase in population 

growth from 2017 to 2021, placing an 37% higher ownership rate than only 16% [3]. 
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While animal use makes a positive contribution to various sectors of life, animal populations can also 

pose some challenges. The more the age grows, enabling the farm to expand to a larger scale, thus 

increasing the scale of the operation. This caused increased manually monitoring of the farm and 

increased the risk of loss of farm animals [4]. Difficulty in controlling the animals when they wander 

complex areas, courtyards, or fields in search of food. As for the animals that are hard to monitor are 

cats, goats, chickens, and cows [5]. In addition, the animals have the potential to enter and destroy the 

plants on the farmland when uncured [6]. 

 

Detecting objects is an important field in computer vision that USES deep learning and machine 

learning models to enhance performance in the object's detection process [7]. The deep learning model 

for this problem consists primarily of two components, at the backbone components that resemble the 

picture's classification model, and the stake proposals that serve to predict boundary boxes [8]. Deep 

learning based object detector is divided over two groups, the two-stage detector and the one stage 

detector [9]. One application of object detection technology is that of animals that have a significant role 

in solving real-world problems [10]. 

 

Deep learning is progressing enormously in computer vision for various tasks, one of which is the 

detection of objects [11]. Deep learning is able to represent data of pictures, videos, or texts without 

relying on human rules. Deep learning has three or more artificial neural networks (ANN), thus being 

able to adapt to multiple data with good performance in resolving complex problems successfully 

through machine learning [12]. 

 

Some scientists have proposed several approaches in which animals should pose in front of cameras to 

recognize the animals, such as animal facial recognition. However, facial recognition cannot identify 

animals that do not observe cameras. Animals can appear in any size, position, and color [10]. As on 

research [4] do the cow detection with the drones using yolov5 and got that the model can detect at an 

altitude of five meters while silent by 75%. Then on research [13], using the mask r-cnn model to detect 

and identify animals using the dashboard camera. Results from detecting cows with precision averaged 

79.47% and dogs with an average of 81,09% precision. 

 

Thus, the study proposes deep learning using the popular one-stage detector, the model you only look 

once (YOLO). Yolo is a famous series of object detection for its accuracy and precision. The latest version 

of yolo, yolov8, is known for its ability to identify objects accurately from inlaid images [14]. Moreover, 

yolov8 also shows a significant increase in the speed of detecting objects [15]. The purpose of this study 

is to detect animals, focusing on four categories, such as cows, goats, cats, and chickens using yolov8 

which then evaluated yolov8's performance in detecting animals. Thus, it is hoped that research will 

provide insight into the optimum model of animal detection, as well as knowledge of its performance. 

 

Methods  
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At this methodology stage, the research flow used in working on the final project will be explained. 

This research methodology provides guidelines in the form of research flow carried out during the 

ongoing research.  

 

 

Figure 1. Research methodology 

 

2.1.  Preparation 

2.1.1. Identifying the problem 

Identifying a problem is by searching for and studying a library obtained from previous research, 

journals and articles on the Internet. The purpose of the study of this literature is to gain insight into 

the problems of research, the basis of theory, and the methods relevant to the research done. 

 

2.1.2. Data colection 
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The data for this study included pictures of four categories of animals, including cows, goats, cats, and 

chickens. It comes from two sources, secondary and primary data assets. Then all of these data are 

stored in local and Google drives to minimize data loss and access anywhere. 

 

 In the study, it will use JPG image format, since it can produce good pictures, especially for 

photographs with lots of colors and gradients and commonly used in built-in digital camera images 

carrying android, the website, E-mail. Moreover, JPG format uses a lossy compression on which it omits 

some information from the original data, but it does not eliminate information significantly in the data 

overall [16]. Application of lossy images compression helps reduce the bandwidth needed to transmit 

images in the network and save storage space on devices. It is beneficial to increase network efficiency 

and use storage space [17]. 

 

2.1.3. Annotate the dataset 

The dataset annotation process is carried out using Roboflow to identify or label the annotated objects. 

Dataset annotation is done by placing marking boxes in the image, which are generally known as 

bounding boxes. 

 

2.1.4. Splitting the dataset 

After the process of labeling and annotating data is complete, it divides the data into three parts, 

training data, validation data, and testing data. This arrangement is important to prevent overfitting 

and ensure accurate model evaluation. Overfitting occurs when the model is so focused on the training 

data that it is difficult to recognize patterns in the testing data differently [18]. In this study, six different 

data distribution schemes for training, validation data, and testing data in sequence are 60%:30%:10%, 

65%:20%:15%, 70%:20%:10%, 75%:15%:10%, 80%:10%:10%, and 85%:10%:5%. 

 Generally, frequent schematics are 80% training, 10% validation, and 10% testing. The bigger the 

training portion, the better the model recognizes the pattern. This division ensures that there is 

sufficient data for validation and testing, so that model performance can be properly evaluated on the 

different data-sharing schemes [19]. 

 

2.1.5. Resize the image and augmentation 

It is done using roboflow by adjusting data size to 640x640 pixels. It was adapted because of the general 

use of image resolution 640x640 pixels in the yolo, so the stride used was 80x80 for small objects, 60x60 

for medium objects, and 20x20 for large objects [20]. 

 In the augmentation process, it used rotation techniques to augment the training data with varying 

variations. It enables models to learn from new data sets, which can reduce overfitting of models and 

also increase accuracy. The rotations to be used include 90°, -90°, 45°, -45°, 15°, and -15° as explained in 

Table 1 below. 

Table 1. Images rotation 

Rotation Description 



 

 

1302 

ICONBIT 2025 

90° Rotate the image a quarter turn clockwise. 

-90° Rotate the image a quarter of a turn 

counterclockwise. 

45° Rotate image one quarter of the 90 brushes 

counterclockwise. 

-45° Rotate image a quarter of the 90 compounds 

counterclockwise. 

15° Rotate image one sixth of the 90 brushes 

counterclockwise. 

-15° Rotate the sixth of the 90 images opposite the 

clock. 

 

2.1.6. Datasset export 

When it has adjusted size and augment, models and source codes are drawn from roboflow by selecting 

yolov8 and downloading it in *.zip. 

 

2.2.  Execute 

2.2.1. Importing datasets with the Roboflow API 

Datasets that have been pre-processed in Roboflow will be downloaded via Kaggle using the API 

provided by Roboflow. Then install the Roboflow library to interact with the Roboflow platform. 

 

2.2.2. Install the library 

After the yolov8's datasset and model had been uploaded to kaggle, the next step was the install and 

importation of several such ultralytics to use the yolov8 model, importing the class from roboflow to 

access data from roboflow. 

 

2.2.3. Go to training 

In doing the yolov8 model training using training data. The data consists of previously annotated 

images with corresponding categories. In this process, the yolov8 architecture is presented in complex 

code form, but is optimized to process real-time images and detect objects with high levels of precision. 

Here is the architectural explanation of yolov8 based on the various layers and modules that make up 

the model. 
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Figure 2. YOLOv8 architecture 

 

a) Layer 0 – 1: Initial Convolutional Layers 
The YOLOv8 model starts with two basic convolutional layers that extract basic features from an image 

and reduce its size to facilitate processing in the subsequent layers. The first layer (Layer 0) is a 

convolutional layer that transforms the input image with 3 color channels (RGB) into features with 48 

channels. This layer uses a 3x3 kernel and a stride of 2, meaning the input image is reduced by half in 

each dimension, resulting in a smaller but deeper feature map. In the next layer (Layer 1), the 

convolution process is repeated with 48 input channels and convolved to 96 output channels using the 

same kernel and stride. 

 

b) Layer 2, 4, 6, 8, 12, 15, 18, 21: C2f Blocks  
The YOLOv8 architecture is built on C2f blocks, which serve as residual blocks. Each C2f block aims to 

deepen and refine feature representations using fewer parameters and faster computation. For 

example, the C2f block in Layer 2 takes input from 96 channels and outputs 96 channels processed 

through two internal convolutional layers. This block is also equipped with a skip connection 

mechanism that combines the initial input and final output to reinforce important functional signals 

and minimize the loss of crucial information. The number of internal layers within each C2f block varies 

between 2 and 4 layers, allowing for more complex features to be extracted at different representation 

levels. 

 

c) Layer 3, 5, 7, 16, 19: Deeper Layers  
These layers (Layer 3, Layer 5, Layer 7, Layer 16, Layer 19) use a 3x3 kernel and convolution with a 

stride of 2 to further reduce the spatial dimensions of the feature map. Each of these layers increases 

the number of output channels, deepening the feature representation, and enabling object detection at 

different scales and resolutions. For instance, Layer 3 takes 96 channels and outputs 192 channels with 

deeper features. The main function of these layers is to filter and adjust feature information so that the 

model can observe more details at different image resolution levels. 

 

d) Layer 9: SPPF Block 
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The SPPF (Spatial Pyramid Pooling Fast) block, included in Layer 9, plays a crucial role in aggregating 

information from the feature map using different window sizes without changing the feature map's 

resolution. In this context, the SPPF block combines spatial information from different window sizes 

(in this case, 5x5) to create an information-rich feature map that enhances the model's performance in 

detecting objects at various scales. This block allows the model to efficiently gather and integrate 

information from multiple scales. 

 

e) Layer 10, 13: Upsampling Layers  
The upsampling layers (Layer 10 and Layer 13) serve to enlarge the feature map so that information 

from lower resolution feature maps can be combined with higher resolution feature maps. These layers 

use proximity upsampling techniques, allowing the model to double the size of the feature map while 

preserving the details and important information previously reduced through the convolution and 

downsampling process. 

 

f) Layer 11, 14, 17, 20: Concatenation Layers 
The concatenation layers (Layer 11, Layer 14, Layer 17, Layer 20) are responsible for merging feature 

maps from earlier levels with feature maps from deeper levels. This concatenation process preserves 

information from various resolution levels and ensures that the model has access to all the necessary 

details to detect objects at different scales. For example, Layer 11 combines features from the previous 

layer with features from the sixth layer, allowing the model to integrate information with varying depth 

and complexity. 

 

g) Layer 22: Detection Layer 
The final layer (Layer 22) is the detection layer, which uses features at different resolutions to detect 

objects of varying sizes. This layer utilizes information from three different resolutions (192, 384, 576) 

to perform the final detection of objects in the image. It leverages information from multiple scales to 

enable the model to effectively detect both small and large objects, thereby allowing for highly accurate 

object detection. 

 

2.3.  Evaluation 

2.3.1. Creating a Confusion Matrix 

A confusion matrix is used to assess the performance of a model. This matrix compares the actual target 

values with the predictions provided by the machine learning model, offering a tabular summary of 

the number of correct and incorrect predictions. Its application involves calculating performance 

metrics such as accuracy, precision, recall, and F1-score to evaluate the performance of the classification 

model [21]. 

 

Table 2. Confusion matrix 

 
Predicted 

Negative (N) Positive (P) 

Actual Negative True Negative (TN) 
False Positive (FP) 
Type I Error 
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Positive 
False Negative (FN) 
Type II Error 

True Positive (TP) 

 

True Positive (TP): When the actual value is positive and the prediction is also positive. 

True Negative (TN): When the actual value is negative and the prediction is also negative. 

False Positive (FP): When the actual value is negative, but the prediction is positive. Also known as 

Type I Error. 

False Negative (FN): When the actual value is positive but the prediction is negative. Also known as 

Type II Error. 

 

2.3.2. Evaluating the trained model 

At this stage, the performance of the trained model will be evaluated using the validation data during 

the model training phase. This data differs from the training data, allowing us to determine whether 

the model has learned well when given new data. 

 

2.3.3. Performing detection 

Next, predictions are run on new images to assess how well the model performs in detecting objects on 

data it has not been trained and validated on before. 

 

Result and Discussion 

 

The process, mechanism, and results of object detection for four types of animals, including Cows, 

Goats, Cats, and Chickens, will be explained in detail at this stage. The steps conducted during the 

research include dataset collection, data preprocessing, data training, model evaluation, and testing 

using deep learning with YOLOv8 (You Only Look Once version 8). Below is an explanation of the 

research results related to the detection of four types of animals using YOLOv8. 

 

3.1.  Implementation results of modeling using YOLOv8 

3.1.1. Dataset 

The data used in this study consists of both primary and secondary data, with a total of 2000 

images, divided into 500 images per category, including Chickens, Cats, Goats, and Cows. The images 

of cows and goats are secondary data obtained from the Roboflow platform and Google search, while 

the images of chickens and cats are primary data collected by taking photos directly in the Surabaya 

area and its surroundings using a mobile phone camera. The details of the primary and secondary data 

can be seen in Table 3. 

Table 3: Images rotation 
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Source Image Quantity 

Roboflow 
Goats 286 

Cows 338 

Google Search 
Goats 214 

Cows 162 

Mobile Phone 

Camera 

Chickens 500 

Cats 500 

Total 2000 

 

Based on the dataset above, the data can be grouped into four class categories, Chickens, Cats, 

Goats, and Cows with 500 images for each class. 

 

3.1.2. Preprocessing data 

• Data annotations 

The data that has previously collected, is identified by labeling, consisting of boundary boxes 

on each animal object in the picture in accordance with the category. In this study, visual annotations 

were done by hand through platfrom roboflow by uploading all the images that had been collected into 

roboflow by creating a new project. There were 2724 divided images of 4 classes, 686 of them for the 

picture labeled 'Sapi,' 729 for the picture labeled 'Kambing,' 614 pictures labeled 'Kucing,' and 695 

pictured as 'Ayam.' Image distribution details can be seen on figure 3. 

  

Figure 3. Image distribution 

• Resize the images and augmentation data 

The data that has previously collected, is identified by labeling, consisting of boundary boxes 

on each Altering the size of the images is done to ensure that the entire picture in the datasset has a 

uniform dimension, which is 640x640. This makes it easier for models to process images because they 

reduce the burden of computing during model training. In this study, an automatic alteration of images 

was made using roboflow. 

Further, augmentation of the images is done by rotating on the images with several angles 

covering 90 levels, -90 angles, 45 cycles, -45 clams, 15 fiftions, and 15 fiftions. The purpose of image 

aungmentation is to enrich the variety of pictures and the number of datastices to be trained. 

550 600 650 700 750

Ayam

Kucing

Kambing

Sapi
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Figure 4. Image rotation 

• Splitting the dataset 

The splitting of data on different subsets is an important step to ensure that object detection 

models can be trained, validated and tested in structured and representative ways. The distribution of 

data is carried out in three different schemes, including training data, validation data, and testing data. 

Training data is used to train models by identifying patterns, characteristics, and objects that are 

relevant to be detected. During training, models optimize their weight and energy through several 

epoch by repeatedly looking at data to enhance model performance. Validation data is used to evaluate 

model performance during training to avoid overfitting. After each epoch, the model was tested on 

validation data to give performance descriptions in new data. This outcome is used to perfect 

hyperparameters and can lead to stopping early training or early stopping if necessary. Testing data is 

used to evaluate a model's final performance after training is over. This data is used only once and does 

not participate in the process of training or validation, giving an accurate evaluation of the models 

already trained. 

However, there were extensions to the training data because of a augmentation of the data. 

Details of the data sharing scheme with the original 2000 images, as well as the addition of new data 

after augmentation, can be seen on table 4. 

 

Table 4: Data splitting details 

Splitting 

Data 

Description Training 

Data 

Validat

ion 

Data 

Testin

g Data 

Total 

60%:30%:10

% 

Data Asli 1200 600 200 2000 

Hasil 

Augmentasi 
8342 600 200 9142 

65%:20%:15

% 

Data Asli 1300 400 300 2000 

Hasil 

Augmentasi 
9039 400 300 9739 

70%:20%:10

% 

Data Asli 1400 400 200 2000 

Hasil 

Augmentasi 
9733 400 200 

1033

3 

Data Asli 1500 300 200 2000 
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75%:15%:10

% 

Hasil 

Augmentasi 
10412 300 200 

1091

2 

80%:10%:10

% 

Data Asli 1600 200 200 2000 

Hasil 

Augmentasi 
11116 200 200 

1151

6 

85%:10%:5% 

Data Asli 1700 200 100 2000 

Hasil 

Augmentasi 
11811 200 100 

1211

1 

 

3.1.3. Learning and training 

Parameters used to evaluate the yolov8 model during training using epoch comparisons and 

data sharing schemes. Epoch is part of the learning that is carried out by deep learning, where the small 

amount of epoch influences the duration and quality of training that is done. The process used by epoch 

is similar to the iteration process, but the epoch is more specific because it involves a full repetition of 

the data that allows the model to continue studying the patterns in the datasset data. Because of limited 

memory, the whole datassets cannot be processed into one epoch ata time, so the datassets are divided 

into several batches. Batch size is the number of samples processed in one mini-batch [22]. Batch size 

used during training on this research is 64. Using a larger batch size can reduce training time. In 

addition, GPU use (Graphics Processing Units) can increase the training efficiency. 

In this study, the model's performance was evaluated using the Precision, Recall, and mAP 

(Mean Average Precision) metrics. The Precision metric measures the accuracy of the model in avoiding 

false positive detections. Meanwhile, the Recall metric assesses the model's effectiveness in detecting 

objects, focusing on minimizing the omission of any objects (False Negative). The mAP metric is used 

to understand the model's ability to recognize and locate objects within images by calculating the 

average precision (AP) for all classes in the dataset and computing it at different Intersection over Union 

(IoU) thresholds. IoU is used to evaluate the alignment between the predicted bounding box and the 

actual bounding box (ground truth) in an image [23]. 

YOLOv8 by default uses mAP50 and mAP50-95. For mAP50, an IoU threshold of 0.5 is used to 

evaluate whether an object is detected rather than how accurately its location is predicted. On the other 

hand, mAP50-95 uses IoU thresholds ranging from 0.50 to 0.95, with increments of 0.05, resulting in ten 

values: 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95. mAP50-95 is used to evaluate the model's 

ability to detect and localize objects with varying levels of precision. Therefore, mAP50-95 may show 

lower values if the predicted bounding boxes do not align well with the actual bounding boxes. 

Here are the details of the training results using six different data splitting schemes, which 

include 60%:30%:10%, 65%:20%:15%, 70%:20%:10%, 75%:15%:10%, 80%:10%:10%, and 85%:10%:5%, 

with each scheme being trained for 125 epochs. 

 

 

 

Table 5: Detailed Training Results with Six Data Splitting Schemes over 125 Epochs 
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Splitting Data Epoch 

Metrics 

Precision Recall 
mAP5

0 

mAP50-

95 

60%:30%:10% 125 0.916 0.871 0.932 0.817 

65%:20%:15% 125 0.91 0.83 0.91 0.766 

70%:20%:10% 125 0.957 0.896 0.958 0.856 

75%:15%:10% 125 0.948 0.862 0.929 0.805 

80%:10%:10% 125 0.963 0.915 0.966 0.866 

85%:10%:5% 125 0.964 0.922 0.966 0.859 

 

Based on the data in the table, experiments were conducted by splitting the training, validation, and 

test data with various proportions, all with 125 epochs. The data splitting schemes of 80%:10%:10% and 

85%:10%:5% showed the best performance with high metrics in Precision, Recall, mAP50, and mAP50-

95. In the 80%:10%:10% data split scheme, Precision reached 0.963, and Recall 0.915, with mAP50 at 

0.966 and mAP50-95 at 0.866. Meanwhile, in the 85%:10%:5% data split scheme, Precision was slightly 

higher at 0.964, and Recall was 0.922, with mAP50 remaining at 0.966, but mAP50-95 was slightly lower 

at 0.859. Overall, the model's performance tended to improve as the proportion of training data 

increased, with the 85%:10%:5% data split scheme yielding the best overall metrics. 

 

In the 85%:10%:5% data splitting scheme, Figure 5 displays the progress of the Precision and Recall 

metrics for the YOLOv8 model during the training process. In the Precision graph (a), it can be seen 

that the Precision value increases rapidly at the beginning of the training and then stabilizes around 

0.95. This indicates that the model becomes more accurate in detecting true positive objects as the 

iterations increase. The Recall graph (b) shows a similar pattern, with a rapid increase at the start of the 

training and stabilization around 0.85. This indicates that the model becomes more effective at detecting 

all existing objects without missing many important ones. Overall, these graphs demonstrate that the 

model achieves good and stable performance, with high Precision and Recall after several iterations, 

indicating that the model is capable of object detection with good accuracy and sensitivity. 

             

(a)                        (b) 

Figure 5. Precision graph (a) and Recall graph (b) for the 85%:10%:5% data splitting scheme 
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Figure 6. mAP Graph for 85%:10%:5% Data Splitting Scheme 

 

The graph in Figure 6 illustrates the object detection model's performance in terms of mAP50 and 

mAP50-95 metrics across several epochs, with data split into 85% training, 10% validation, and 5% 

testing. The x-axis represents the number of training epochs, while the y-axis shows the mAP values, 

indicating the YOLOv8 model's effectiveness in detecting objects. The blue line represents mAP50 with 

an IoU threshold of 0.5, meaning predictions are considered correct if there's at least 50% overlap. The 

graph shows a sharp increase in mAP50 at the start, stabilizing around 0.9 after about 20 epochs, 

indicating rapid learning for high-precision object detection at this threshold. The orange line 

represents mAP50-95, a stricter metric that assesses performance across various overlap thresholds. 

Although mAP50-95 also improves during training, it doesn't reach the same level as mAP50, 

stabilizing around 0.8 after 20 epochs. This suggests the model performs well but slightly less so under 

stricter evaluation criteria. 

 

Overall, the graph shows that the model achieves high and stable performance after approximately 20 

epochs. The training process seems to have stopped early, likely due to early stopping, which prevents 

overfitting and saves computational time [24].  

 

Next, a random image sample from the testing data will be displayed. This testing data contains new 

images or datasets that have never been seen by the model during the training or validation stages. 

Figure 7 provides 4 random samples with the detected object names and their accuracy results. 

          

(a)                                   (b) 
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(c)                                   (d) 

 

Figure 7. Prediction Results for Images of Chicken (a), Goat (b), Cat (c), and Cow (d) in the Division of 

85%:15%:5% 

 

3.2.  Model evaluation for object detection 

The model evaluation for object detection using YOLOv8 in this research was conducted with a 

confusion matrix. This evaluation provides an overview of the model's performance in recognizing and 

detecting the four types of animals that were previously trained. At this stage, the evaluation was done 

automatically without manual testing by utilizing a Python library to generate the confusion matrix 

table, which was then used to manually calculate the accuracy, precision, recall, and F1-score to achieve 

optimal results. The model used for evaluating the results is the one generated from the previous 

training process. This model was selected based on the highest results in each data split, specifically in 

the 85%:10%:5% data split scheme. 

 

Figure 8: Confusion matrix 85%:10%:5% 

 

Figure 8 shows the results of the confusion matrix used to evaluate the performance of the YOLOv8 

model for detecting the four animal classes Ayam, kambing, Kucing, and Sapi in the 85%:10%:5% data 
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split scheme. The confusion matrix has two axes: the y-axis representing the True Label from the test 

data, and the x-axis representing the Predicted Label generated by the model. It is noted that there is a 

mapping of confusion matrix values based on different colored lines yellow, blue, and green with 

distinct meanings. The TP (True Positive) value is defined by the yellow color, the FP (False Positive) 

value is defined by the blue color, and FN (False Negative) is defined by the green color.  

 

Calculating Accuracy measures how accurately the model can predict, expressed as the ratio of correct 

predictions to the total predictions. 

 

Accuracy =
TP

∑ 𝐷𝑎𝑡𝑎
× 100%  

                                         =
11196

11242
× 100% 

                                    = 99.5%                                                                                                             

(1) 

Calculating Precision is an indicator of the correctness in positive predictions, measuring how many 

of the positive predictions are actually correct out of the total positive predictions. 

 

                 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%  

 

Table 6: Detailed Training Results with Six Data Splitting Schemes over 125 Epochs 

 True Positive False Positive Presisi 

Ayam 2800 0 
2800

2800
= 1.00 

Kambing 2797 1 
2797

2798
= 0.99 

Kucing 2800 1 
2800

2800
= 1.00 

Sapi 2799 44 
2799

2843
= 0.984 

Undetected 0 0 - 

Total 3.974 

 

                 𝐴𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝐽𝑢𝑚𝑙𝑎ℎ 𝐾𝑒𝑙𝑎𝑠
× 100%   

𝐴𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
3.977

5
× 100% = 79.5% (2) 

Calculating Recall (Sensitivity) is a measure of how well the model can correctly predict actual 

positive observations, indicating how effectively the model captures true positives. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%  

Table 7: Detailed Training Results with Six Data Splitting Schemes over 125 Epochs 

 True Positive False Positive Presisi 

Ayam 2800 0 
2800

2800
= 1.00 

Kambing 2797 3 
2797

2800
= 0.998 

Kucing 2800 0 
2800

2800
= 1.00 

Sapi 2799 1 
2799

2800
= 0.999 

Undetected 0 42 
0

42
= 0 

Total 3.997  

 

𝐴𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑅𝑒𝑐𝑎𝑙𝑙

𝐽𝑢𝑚𝑙𝑎ℎ 𝐾𝑒𝑙𝑎𝑠
× 100%  

𝐴𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 =
3997

5
× 100% = 79.9% (3) 

F1-score is a value ranging from 0 to 1, representing the harmonic mean between precision and 

recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑅𝑒𝑐𝑎𝑙𝑙 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
× 100%  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(0.799 ×0.794)

(0.799+0.794)
× 100% = 79.6%  (4) 

 After conducting testing with a total of 11,242 images and calculating the values for the 

Accuracy, Precision, Recall, and F1-Score indicators using the 85%:10%:5% data split scheme and 125 

Epochs, it was found that the obtained accuracy is quite high, at 0.995 or 99.5%. Additionally, Precision 

was 0.799 or 79.9%, Recall reached 0.794 or 79.4%, and the F1-Score was 0.796 or 79.6%. Overall, the 

model was able to effectively detect the four types of animals it was trained on, showing a balance 

between Precision and Recall, although the Precision, Recall, and F1-Score values were still relatively 

low. This occurred because, despite many correct predictions, there were still some errors, particularly 

in the Undetected class. This class refers to objects that the model was unable to recognize as any of the 

existing classes (Ayam, Kucing, Kambing, Sapi). 

 

3.3.  The detection analysis with the application's web system 

3.3.1. Research model integration on the application web system 

The study successfully integrated the yolov8 model into a web application to detect four types 

of animals, chickens, cats, goats, and cows real-time using a laptop camera. Testing indicates that the 

model trained with 125 epochs and the 85% data scheme for training, 10% for validation, and 5% for 

testing, produces high accuracy during the training process. 
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  To implement this model on the application web, minimum laptop specs with i3 core Intel 

processor, 8 GB RAM, minimum SSD storage of 20 GB, and Windows 10 operating systems are 

required. Virtual GPU (Graphics Processing Units) use is also recommended to accelerate the training 

process. 

After that, the Web Application will be implemented on a previously trained model using the 

API (Application Programming Interface) from the previously trained model obtained from Roboflow, 

as illustrated in Figure 9. Deployment of the model was carried out using Python and the Flask 

framework, with installation and setup of the virtual environment via Anaconda. Flask is used as a 

microframework to develop a web application that integrates the YOLOv8 model for predictions. 

Additionally, several folders for HTML, CSS, and JavaScript need to be prepared as the visual elements 

of the website to be used. 

 

Figure 9. Deployment of Pre-Trained Models 

 

Next, to develop the web application, the repository containing the ‘app.py’ file is cloned or 

downloaded, and a new environment is created using the Anaconda prompt with the command ‘conda 

create --name animals_env python=3.10.0’. This is followed by activating the environment using ‘conda 

activate animals_env’. All necessary dependencies are installed by running ‘pip install -r 

requirements.txt’. 

The web application is developed using Flask, with ‘app.py’ as the application's entry point. 

The trained YOLOv8 model is utilized for prediction through the ‘/predict’ endpoint. The web 

application is run with the command ‘python app.py’, and it can be accessed through the provided 

link, such as http://127.0.0.1:5000/. 

In Figure 10, the initial page of the web application is displayed, featuring two main menus: 

Home and Deteksi. The Deteksi feature is used to perform real-time detection of four animal types 

Chicken, Cat, Goat, and Cow using a laptop camera. To access this feature, you can click the Start button 

or directly select Deteksi from the main menu at the top center, which will navigate to the Detection 

page. 

          

(a)                                    (b) 

Figure 10. Display of the initial web page (a) and detection page (b) after deploying 

 

3.3.2. Detection Testing Results with the Web Application System 
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The testing was conducted using two methods: image-based testing and direct observation of live 

animals. The image-based testing results can be seen in Figure 11. The system successfully detected 

chicken, cat, goat, and cow objects with accuracy matching the ground truth, indicating that the model 

has been well-trained. 

 

          

(b)                                     (b) 

          

(c)                                     (d) 

 

Figure 11. Detection results using real-time images of Chickens (a), Goats (b), Cats (c), and Cows (d). 

 

The live animal testing results are shown in Figure 12. Detection was performed in real-time using a 

laptop camera. The results for the cow, goat, and cat show that the system could detect the objects, but 

the bounding boxes often did not align with the actual position of the objects. This was due to several 

factors, such as the similarity of the object’s color to the background, the large number of animals, and 

the influence of sunlight. However, in the chicken testing, the system successfully detected the object 

with high accuracy due to the absence of other disturbances. 

 

          

(a)                                    (b) 
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(c)                                     (d) 

 

Figure 12. Detection results of real farmed animals, including Chickens (a), Goats (b), Cats (c), and 

Cows (d) in real-time. 

 

 

Conclusion  

 

The conclusions of this study indicate that the YOLOv8 algorithm successfully detected four types of 

animals (Chicken, Cat, Cow, and Goat) with high accuracy under controlled conditions using static 

images. The best performance was achieved with a data split scheme of 85% for training, 15% for 

validation, and 5% for testing, yielding an Accuracy of 0.995, Precision of 0.794, Recall of 0.799, and an 

F1 Score of 0.796. The web application system, tested in real-time, also successfully detected animals 

with 100% accuracy. However, the model faced challenges in real-world scenarios involving 

movement, changing lighting, and multiple objects. To improve detection performance in real 

environments, it is recommended to increase the training data, perform data augmentation, optimize 

hyperparameters, and adjust the model to handle undetected objects and diverse environmental 

conditions. Implementing these recommendations is expected to enhance the system's accuracy and 

reliability in various conditions. 
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