

1298

ICONBIT 2025

Enhanced Animal Detection Using YOLOv8 and Data
Augmentation Techniques: A Deep Learning Perspective

Rizqi Putri Nourma Budiarti1*, Fitria Anggraini2, Ubaidillah Zuhdi3,

Niken Savitri Primasari4, Dion Satrio5

1,4,5 Digital Business, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia.

2Information System, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia.
3Management, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia.

*Email: rizqi.putri.nb@unusa.ac.id

Abstract. In various aspects of human life, animals are widely exploited as a

labor, consumption, pet, and for research. While animal use contributes

favorably to various sectors of life, the number of animal populations allows

the farm to expand to a larger scale, increasing the scale of the operation. This

has made it increasingly difficult for the monitoring of the farm to do so when

animals roam the complex areas, courtyards, open fields, or farmland in search

of food. As for the animals that are hard to monitor are cats, goats, chickens,

and cows. Thus, the development of animal detection technologies using deep

learning to make it easier to monitor animals as they prowl for food. In the

study, four types of animal animals, chickens, cats, goats, and cows use deep

learning, yolov8 (You Only Look Once version 8) that is known for accuracy

in identifying objects. The stages taken on this study include data collection,

data annotations, data division, augmentation, data training, and results

evaluation. Excellent training results from 125 epoch on the 85% data share

scheme training, 15% of validation data, and 5% of data testing with datasets

at 11242 pictures achieve an accuracy rate of 99.5%, precision by 79.4%, recall

by 79.9%, and f1-score by 76.6%.

Keywords: Immediately Animals Detection, Deep Learning, YOLOv8, Data

Augmentation, Computer Vision.

Introduction

In various aspects of human life, animals are widely exploited as Labour, consumption, domesticated,

and for research [1]. As mankind's need for animal resources grows, the animal population in Indonesia

is also growing. According to [2] Indonesia's population of farm animals in 2022 is estimated to have

been 17.75 million cattle, while goats are estimated to have been 18.55 million, and chickens estimated

at 3.8 billion. In addition, in Indonesia there are pets, one of which is a 129% increase in population

growth from 2017 to 2021, placing an 37% higher ownership rate than only 16% [3].

1299

ICONBIT 2025

While animal use makes a positive contribution to various sectors of life, animal populations can also

pose some challenges. The more the age grows, enabling the farm to expand to a larger scale, thus

increasing the scale of the operation. This caused increased manually monitoring of the farm and

increased the risk of loss of farm animals [4]. Difficulty in controlling the animals when they wander

complex areas, courtyards, or fields in search of food. As for the animals that are hard to monitor are

cats, goats, chickens, and cows [5]. In addition, the animals have the potential to enter and destroy the

plants on the farmland when uncured [6].

Detecting objects is an important field in computer vision that USES deep learning and machine

learning models to enhance performance in the object's detection process [7]. The deep learning model

for this problem consists primarily of two components, at the backbone components that resemble the

picture's classification model, and the stake proposals that serve to predict boundary boxes [8]. Deep

learning based object detector is divided over two groups, the two-stage detector and the one stage

detector [9]. One application of object detection technology is that of animals that have a significant role

in solving real-world problems [10].

Deep learning is progressing enormously in computer vision for various tasks, one of which is the

detection of objects [11]. Deep learning is able to represent data of pictures, videos, or texts without

relying on human rules. Deep learning has three or more artificial neural networks (ANN), thus being

able to adapt to multiple data with good performance in resolving complex problems successfully

through machine learning [12].

Some scientists have proposed several approaches in which animals should pose in front of cameras to

recognize the animals, such as animal facial recognition. However, facial recognition cannot identify

animals that do not observe cameras. Animals can appear in any size, position, and color [10]. As on

research [4] do the cow detection with the drones using yolov5 and got that the model can detect at an

altitude of five meters while silent by 75%. Then on research [13], using the mask r-cnn model to detect

and identify animals using the dashboard camera. Results from detecting cows with precision averaged

79.47% and dogs with an average of 81,09% precision.

Thus, the study proposes deep learning using the popular one-stage detector, the model you only look

once (YOLO). Yolo is a famous series of object detection for its accuracy and precision. The latest version

of yolo, yolov8, is known for its ability to identify objects accurately from inlaid images [14]. Moreover,

yolov8 also shows a significant increase in the speed of detecting objects [15]. The purpose of this study

is to detect animals, focusing on four categories, such as cows, goats, cats, and chickens using yolov8

which then evaluated yolov8's performance in detecting animals. Thus, it is hoped that research will

provide insight into the optimum model of animal detection, as well as knowledge of its performance.

Methods

1300

ICONBIT 2025

At this methodology stage, the research flow used in working on the final project will be explained.

This research methodology provides guidelines in the form of research flow carried out during the

ongoing research.

Figure 1. Research methodology

2.1. Preparation

2.1.1. Identifying the problem

Identifying a problem is by searching for and studying a library obtained from previous research,

journals and articles on the Internet. The purpose of the study of this literature is to gain insight into

the problems of research, the basis of theory, and the methods relevant to the research done.

2.1.2. Data colection

1301

ICONBIT 2025

The data for this study included pictures of four categories of animals, including cows, goats, cats, and

chickens. It comes from two sources, secondary and primary data assets. Then all of these data are

stored in local and Google drives to minimize data loss and access anywhere.

 In the study, it will use JPG image format, since it can produce good pictures, especially for

photographs with lots of colors and gradients and commonly used in built-in digital camera images

carrying android, the website, E-mail. Moreover, JPG format uses a lossy compression on which it omits

some information from the original data, but it does not eliminate information significantly in the data

overall [16]. Application of lossy images compression helps reduce the bandwidth needed to transmit

images in the network and save storage space on devices. It is beneficial to increase network efficiency

and use storage space [17].

2.1.3. Annotate the dataset

The dataset annotation process is carried out using Roboflow to identify or label the annotated objects.

Dataset annotation is done by placing marking boxes in the image, which are generally known as

bounding boxes.

2.1.4. Splitting the dataset

After the process of labeling and annotating data is complete, it divides the data into three parts,

training data, validation data, and testing data. This arrangement is important to prevent overfitting

and ensure accurate model evaluation. Overfitting occurs when the model is so focused on the training

data that it is difficult to recognize patterns in the testing data differently [18]. In this study, six different

data distribution schemes for training, validation data, and testing data in sequence are 60%:30%:10%,

65%:20%:15%, 70%:20%:10%, 75%:15%:10%, 80%:10%:10%, and 85%:10%:5%.

 Generally, frequent schematics are 80% training, 10% validation, and 10% testing. The bigger the

training portion, the better the model recognizes the pattern. This division ensures that there is

sufficient data for validation and testing, so that model performance can be properly evaluated on the

different data-sharing schemes [19].

2.1.5. Resize the image and augmentation

It is done using roboflow by adjusting data size to 640x640 pixels. It was adapted because of the general

use of image resolution 640x640 pixels in the yolo, so the stride used was 80x80 for small objects, 60x60

for medium objects, and 20x20 for large objects [20].

 In the augmentation process, it used rotation techniques to augment the training data with varying

variations. It enables models to learn from new data sets, which can reduce overfitting of models and

also increase accuracy. The rotations to be used include 90°, -90°, 45°, -45°, 15°, and -15° as explained in

Table 1 below.

Table 1. Images rotation

Rotation Description

1302

ICONBIT 2025

90° Rotate the image a quarter turn clockwise.

-90° Rotate the image a quarter of a turn

counterclockwise.

45° Rotate image one quarter of the 90 brushes

counterclockwise.

-45° Rotate image a quarter of the 90 compounds

counterclockwise.

15° Rotate image one sixth of the 90 brushes

counterclockwise.

-15° Rotate the sixth of the 90 images opposite the

clock.

2.1.6. Datasset export

When it has adjusted size and augment, models and source codes are drawn from roboflow by selecting

yolov8 and downloading it in *.zip.

2.2. Execute

2.2.1. Importing datasets with the Roboflow API

Datasets that have been pre-processed in Roboflow will be downloaded via Kaggle using the API

provided by Roboflow. Then install the Roboflow library to interact with the Roboflow platform.

2.2.2. Install the library

After the yolov8's datasset and model had been uploaded to kaggle, the next step was the install and

importation of several such ultralytics to use the yolov8 model, importing the class from roboflow to

access data from roboflow.

2.2.3. Go to training

In doing the yolov8 model training using training data. The data consists of previously annotated

images with corresponding categories. In this process, the yolov8 architecture is presented in complex

code form, but is optimized to process real-time images and detect objects with high levels of precision.

Here is the architectural explanation of yolov8 based on the various layers and modules that make up

the model.

1303

ICONBIT 2025

Figure 2. YOLOv8 architecture

a) Layer 0 – 1: Initial Convolutional Layers
The YOLOv8 model starts with two basic convolutional layers that extract basic features from an image

and reduce its size to facilitate processing in the subsequent layers. The first layer (Layer 0) is a

convolutional layer that transforms the input image with 3 color channels (RGB) into features with 48

channels. This layer uses a 3x3 kernel and a stride of 2, meaning the input image is reduced by half in

each dimension, resulting in a smaller but deeper feature map. In the next layer (Layer 1), the

convolution process is repeated with 48 input channels and convolved to 96 output channels using the

same kernel and stride.

b) Layer 2, 4, 6, 8, 12, 15, 18, 21: C2f Blocks
The YOLOv8 architecture is built on C2f blocks, which serve as residual blocks. Each C2f block aims to

deepen and refine feature representations using fewer parameters and faster computation. For

example, the C2f block in Layer 2 takes input from 96 channels and outputs 96 channels processed

through two internal convolutional layers. This block is also equipped with a skip connection

mechanism that combines the initial input and final output to reinforce important functional signals

and minimize the loss of crucial information. The number of internal layers within each C2f block varies

between 2 and 4 layers, allowing for more complex features to be extracted at different representation

levels.

c) Layer 3, 5, 7, 16, 19: Deeper Layers
These layers (Layer 3, Layer 5, Layer 7, Layer 16, Layer 19) use a 3x3 kernel and convolution with a

stride of 2 to further reduce the spatial dimensions of the feature map. Each of these layers increases

the number of output channels, deepening the feature representation, and enabling object detection at

different scales and resolutions. For instance, Layer 3 takes 96 channels and outputs 192 channels with

deeper features. The main function of these layers is to filter and adjust feature information so that the

model can observe more details at different image resolution levels.

d) Layer 9: SPPF Block

1304

ICONBIT 2025

The SPPF (Spatial Pyramid Pooling Fast) block, included in Layer 9, plays a crucial role in aggregating

information from the feature map using different window sizes without changing the feature map's

resolution. In this context, the SPPF block combines spatial information from different window sizes

(in this case, 5x5) to create an information-rich feature map that enhances the model's performance in

detecting objects at various scales. This block allows the model to efficiently gather and integrate

information from multiple scales.

e) Layer 10, 13: Upsampling Layers
The upsampling layers (Layer 10 and Layer 13) serve to enlarge the feature map so that information

from lower resolution feature maps can be combined with higher resolution feature maps. These layers

use proximity upsampling techniques, allowing the model to double the size of the feature map while

preserving the details and important information previously reduced through the convolution and

downsampling process.

f) Layer 11, 14, 17, 20: Concatenation Layers
The concatenation layers (Layer 11, Layer 14, Layer 17, Layer 20) are responsible for merging feature

maps from earlier levels with feature maps from deeper levels. This concatenation process preserves

information from various resolution levels and ensures that the model has access to all the necessary

details to detect objects at different scales. For example, Layer 11 combines features from the previous

layer with features from the sixth layer, allowing the model to integrate information with varying depth

and complexity.

g) Layer 22: Detection Layer
The final layer (Layer 22) is the detection layer, which uses features at different resolutions to detect

objects of varying sizes. This layer utilizes information from three different resolutions (192, 384, 576)

to perform the final detection of objects in the image. It leverages information from multiple scales to

enable the model to effectively detect both small and large objects, thereby allowing for highly accurate

object detection.

2.3. Evaluation

2.3.1. Creating a Confusion Matrix

A confusion matrix is used to assess the performance of a model. This matrix compares the actual target

values with the predictions provided by the machine learning model, offering a tabular summary of

the number of correct and incorrect predictions. Its application involves calculating performance

metrics such as accuracy, precision, recall, and F1-score to evaluate the performance of the classification

model [21].

Table 2. Confusion matrix

Predicted

Negative (N) Positive (P)

Actual Negative True Negative (TN)
False Positive (FP)
Type I Error

1305

ICONBIT 2025

Positive
False Negative (FN)
Type II Error

True Positive (TP)

True Positive (TP): When the actual value is positive and the prediction is also positive.

True Negative (TN): When the actual value is negative and the prediction is also negative.

False Positive (FP): When the actual value is negative, but the prediction is positive. Also known as

Type I Error.

False Negative (FN): When the actual value is positive but the prediction is negative. Also known as

Type II Error.

2.3.2. Evaluating the trained model

At this stage, the performance of the trained model will be evaluated using the validation data during

the model training phase. This data differs from the training data, allowing us to determine whether

the model has learned well when given new data.

2.3.3. Performing detection

Next, predictions are run on new images to assess how well the model performs in detecting objects on

data it has not been trained and validated on before.

Result and Discussion

The process, mechanism, and results of object detection for four types of animals, including Cows,

Goats, Cats, and Chickens, will be explained in detail at this stage. The steps conducted during the

research include dataset collection, data preprocessing, data training, model evaluation, and testing

using deep learning with YOLOv8 (You Only Look Once version 8). Below is an explanation of the

research results related to the detection of four types of animals using YOLOv8.

3.1. Implementation results of modeling using YOLOv8

3.1.1. Dataset

The data used in this study consists of both primary and secondary data, with a total of 2000

images, divided into 500 images per category, including Chickens, Cats, Goats, and Cows. The images

of cows and goats are secondary data obtained from the Roboflow platform and Google search, while

the images of chickens and cats are primary data collected by taking photos directly in the Surabaya

area and its surroundings using a mobile phone camera. The details of the primary and secondary data

can be seen in Table 3.

Table 3: Images rotation

1306

ICONBIT 2025

Source Image Quantity

Roboflow
Goats 286

Cows 338

Google Search
Goats 214

Cows 162

Mobile Phone

Camera

Chickens 500

Cats 500

Total 2000

Based on the dataset above, the data can be grouped into four class categories, Chickens, Cats,

Goats, and Cows with 500 images for each class.

3.1.2. Preprocessing data

• Data annotations

The data that has previously collected, is identified by labeling, consisting of boundary boxes

on each animal object in the picture in accordance with the category. In this study, visual annotations

were done by hand through platfrom roboflow by uploading all the images that had been collected into

roboflow by creating a new project. There were 2724 divided images of 4 classes, 686 of them for the

picture labeled 'Sapi,' 729 for the picture labeled 'Kambing,' 614 pictures labeled 'Kucing,' and 695

pictured as 'Ayam.' Image distribution details can be seen on figure 3.

Figure 3. Image distribution

• Resize the images and augmentation data

The data that has previously collected, is identified by labeling, consisting of boundary boxes

on each Altering the size of the images is done to ensure that the entire picture in the datasset has a

uniform dimension, which is 640x640. This makes it easier for models to process images because they

reduce the burden of computing during model training. In this study, an automatic alteration of images

was made using roboflow.

Further, augmentation of the images is done by rotating on the images with several angles

covering 90 levels, -90 angles, 45 cycles, -45 clams, 15 fiftions, and 15 fiftions. The purpose of image

aungmentation is to enrich the variety of pictures and the number of datastices to be trained.

550 600 650 700 750

Ayam

Kucing

Kambing

Sapi

1307

ICONBIT 2025

Figure 4. Image rotation

• Splitting the dataset

The splitting of data on different subsets is an important step to ensure that object detection

models can be trained, validated and tested in structured and representative ways. The distribution of

data is carried out in three different schemes, including training data, validation data, and testing data.

Training data is used to train models by identifying patterns, characteristics, and objects that are

relevant to be detected. During training, models optimize their weight and energy through several

epoch by repeatedly looking at data to enhance model performance. Validation data is used to evaluate

model performance during training to avoid overfitting. After each epoch, the model was tested on

validation data to give performance descriptions in new data. This outcome is used to perfect

hyperparameters and can lead to stopping early training or early stopping if necessary. Testing data is

used to evaluate a model's final performance after training is over. This data is used only once and does

not participate in the process of training or validation, giving an accurate evaluation of the models

already trained.

However, there were extensions to the training data because of a augmentation of the data.

Details of the data sharing scheme with the original 2000 images, as well as the addition of new data

after augmentation, can be seen on table 4.

Table 4: Data splitting details

Splitting

Data

Description Training

Data

Validat

ion

Data

Testin

g Data

Total

60%:30%:10

%

Data Asli 1200 600 200 2000

Hasil

Augmentasi
8342 600 200 9142

65%:20%:15

%

Data Asli 1300 400 300 2000

Hasil

Augmentasi
9039 400 300 9739

70%:20%:10

%

Data Asli 1400 400 200 2000

Hasil

Augmentasi
9733 400 200

1033

3

Data Asli 1500 300 200 2000

1308

ICONBIT 2025

75%:15%:10

%

Hasil

Augmentasi
10412 300 200

1091

2

80%:10%:10

%

Data Asli 1600 200 200 2000

Hasil

Augmentasi
11116 200 200

1151

6

85%:10%:5%

Data Asli 1700 200 100 2000

Hasil

Augmentasi
11811 200 100

1211

1

3.1.3. Learning and training

Parameters used to evaluate the yolov8 model during training using epoch comparisons and

data sharing schemes. Epoch is part of the learning that is carried out by deep learning, where the small

amount of epoch influences the duration and quality of training that is done. The process used by epoch

is similar to the iteration process, but the epoch is more specific because it involves a full repetition of

the data that allows the model to continue studying the patterns in the datasset data. Because of limited

memory, the whole datassets cannot be processed into one epoch ata time, so the datassets are divided

into several batches. Batch size is the number of samples processed in one mini-batch [22]. Batch size

used during training on this research is 64. Using a larger batch size can reduce training time. In

addition, GPU use (Graphics Processing Units) can increase the training efficiency.

In this study, the model's performance was evaluated using the Precision, Recall, and mAP

(Mean Average Precision) metrics. The Precision metric measures the accuracy of the model in avoiding

false positive detections. Meanwhile, the Recall metric assesses the model's effectiveness in detecting

objects, focusing on minimizing the omission of any objects (False Negative). The mAP metric is used

to understand the model's ability to recognize and locate objects within images by calculating the

average precision (AP) for all classes in the dataset and computing it at different Intersection over Union

(IoU) thresholds. IoU is used to evaluate the alignment between the predicted bounding box and the

actual bounding box (ground truth) in an image [23].

YOLOv8 by default uses mAP50 and mAP50-95. For mAP50, an IoU threshold of 0.5 is used to

evaluate whether an object is detected rather than how accurately its location is predicted. On the other

hand, mAP50-95 uses IoU thresholds ranging from 0.50 to 0.95, with increments of 0.05, resulting in ten

values: 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95. mAP50-95 is used to evaluate the model's

ability to detect and localize objects with varying levels of precision. Therefore, mAP50-95 may show

lower values if the predicted bounding boxes do not align well with the actual bounding boxes.

Here are the details of the training results using six different data splitting schemes, which

include 60%:30%:10%, 65%:20%:15%, 70%:20%:10%, 75%:15%:10%, 80%:10%:10%, and 85%:10%:5%,

with each scheme being trained for 125 epochs.

Table 5: Detailed Training Results with Six Data Splitting Schemes over 125 Epochs

1309

ICONBIT 2025

Splitting Data Epoch

Metrics

Precision Recall
mAP5

0

mAP50-

95

60%:30%:10% 125 0.916 0.871 0.932 0.817

65%:20%:15% 125 0.91 0.83 0.91 0.766

70%:20%:10% 125 0.957 0.896 0.958 0.856

75%:15%:10% 125 0.948 0.862 0.929 0.805

80%:10%:10% 125 0.963 0.915 0.966 0.866

85%:10%:5% 125 0.964 0.922 0.966 0.859

Based on the data in the table, experiments were conducted by splitting the training, validation, and

test data with various proportions, all with 125 epochs. The data splitting schemes of 80%:10%:10% and

85%:10%:5% showed the best performance with high metrics in Precision, Recall, mAP50, and mAP50-

95. In the 80%:10%:10% data split scheme, Precision reached 0.963, and Recall 0.915, with mAP50 at

0.966 and mAP50-95 at 0.866. Meanwhile, in the 85%:10%:5% data split scheme, Precision was slightly

higher at 0.964, and Recall was 0.922, with mAP50 remaining at 0.966, but mAP50-95 was slightly lower

at 0.859. Overall, the model's performance tended to improve as the proportion of training data

increased, with the 85%:10%:5% data split scheme yielding the best overall metrics.

In the 85%:10%:5% data splitting scheme, Figure 5 displays the progress of the Precision and Recall

metrics for the YOLOv8 model during the training process. In the Precision graph (a), it can be seen

that the Precision value increases rapidly at the beginning of the training and then stabilizes around

0.95. This indicates that the model becomes more accurate in detecting true positive objects as the

iterations increase. The Recall graph (b) shows a similar pattern, with a rapid increase at the start of the

training and stabilization around 0.85. This indicates that the model becomes more effective at detecting

all existing objects without missing many important ones. Overall, these graphs demonstrate that the

model achieves good and stable performance, with high Precision and Recall after several iterations,

indicating that the model is capable of object detection with good accuracy and sensitivity.

(a) (b)

Figure 5. Precision graph (a) and Recall graph (b) for the 85%:10%:5% data splitting scheme

1310

ICONBIT 2025

Figure 6. mAP Graph for 85%:10%:5% Data Splitting Scheme

The graph in Figure 6 illustrates the object detection model's performance in terms of mAP50 and

mAP50-95 metrics across several epochs, with data split into 85% training, 10% validation, and 5%

testing. The x-axis represents the number of training epochs, while the y-axis shows the mAP values,

indicating the YOLOv8 model's effectiveness in detecting objects. The blue line represents mAP50 with

an IoU threshold of 0.5, meaning predictions are considered correct if there's at least 50% overlap. The

graph shows a sharp increase in mAP50 at the start, stabilizing around 0.9 after about 20 epochs,

indicating rapid learning for high-precision object detection at this threshold. The orange line

represents mAP50-95, a stricter metric that assesses performance across various overlap thresholds.

Although mAP50-95 also improves during training, it doesn't reach the same level as mAP50,

stabilizing around 0.8 after 20 epochs. This suggests the model performs well but slightly less so under

stricter evaluation criteria.

Overall, the graph shows that the model achieves high and stable performance after approximately 20

epochs. The training process seems to have stopped early, likely due to early stopping, which prevents

overfitting and saves computational time [24].

Next, a random image sample from the testing data will be displayed. This testing data contains new

images or datasets that have never been seen by the model during the training or validation stages.

Figure 7 provides 4 random samples with the detected object names and their accuracy results.

(a) (b)

1311

ICONBIT 2025

(c) (d)

Figure 7. Prediction Results for Images of Chicken (a), Goat (b), Cat (c), and Cow (d) in the Division of

85%:15%:5%

3.2. Model evaluation for object detection

The model evaluation for object detection using YOLOv8 in this research was conducted with a

confusion matrix. This evaluation provides an overview of the model's performance in recognizing and

detecting the four types of animals that were previously trained. At this stage, the evaluation was done

automatically without manual testing by utilizing a Python library to generate the confusion matrix

table, which was then used to manually calculate the accuracy, precision, recall, and F1-score to achieve

optimal results. The model used for evaluating the results is the one generated from the previous

training process. This model was selected based on the highest results in each data split, specifically in

the 85%:10%:5% data split scheme.

Figure 8: Confusion matrix 85%:10%:5%

Figure 8 shows the results of the confusion matrix used to evaluate the performance of the YOLOv8

model for detecting the four animal classes Ayam, kambing, Kucing, and Sapi in the 85%:10%:5% data

1312

ICONBIT 2025

split scheme. The confusion matrix has two axes: the y-axis representing the True Label from the test

data, and the x-axis representing the Predicted Label generated by the model. It is noted that there is a

mapping of confusion matrix values based on different colored lines yellow, blue, and green with

distinct meanings. The TP (True Positive) value is defined by the yellow color, the FP (False Positive)

value is defined by the blue color, and FN (False Negative) is defined by the green color.

Calculating Accuracy measures how accurately the model can predict, expressed as the ratio of correct

predictions to the total predictions.

Accuracy =
TP

∑ 𝐷𝑎𝑡𝑎
× 100%

 =
11196

11242
× 100%

 = 99.5%

(1)

Calculating Precision is an indicator of the correctness in positive predictions, measuring how many

of the positive predictions are actually correct out of the total positive predictions.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%

Table 6: Detailed Training Results with Six Data Splitting Schemes over 125 Epochs

 True Positive False Positive Presisi

Ayam 2800 0
2800

2800
= 1.00

Kambing 2797 1
2797

2798
= 0.99

Kucing 2800 1
2800

2800
= 1.00

Sapi 2799 44
2799

2843
= 0.984

Undetected 0 0 -

Total 3.974

 𝐴𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝐽𝑢𝑚𝑙𝑎ℎ 𝐾𝑒𝑙𝑎𝑠
× 100%

𝐴𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
3.977

5
× 100% = 79.5% (2)

Calculating Recall (Sensitivity) is a measure of how well the model can correctly predict actual

positive observations, indicating how effectively the model captures true positives.

1313

ICONBIT 2025

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%

Table 7: Detailed Training Results with Six Data Splitting Schemes over 125 Epochs

 True Positive False Positive Presisi

Ayam 2800 0
2800

2800
= 1.00

Kambing 2797 3
2797

2800
= 0.998

Kucing 2800 0
2800

2800
= 1.00

Sapi 2799 1
2799

2800
= 0.999

Undetected 0 42
0

42
= 0

Total 3.997

𝐴𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑅𝑒𝑐𝑎𝑙𝑙

𝐽𝑢𝑚𝑙𝑎ℎ 𝐾𝑒𝑙𝑎𝑠
× 100%

𝐴𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 =
3997

5
× 100% = 79.9% (3)

F1-score is a value ranging from 0 to 1, representing the harmonic mean between precision and

recall.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑅𝑒𝑐𝑎𝑙𝑙 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
× 100%

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(0.799 ×0.794)

(0.799+0.794)
× 100% = 79.6% (4)

 After conducting testing with a total of 11,242 images and calculating the values for the

Accuracy, Precision, Recall, and F1-Score indicators using the 85%:10%:5% data split scheme and 125

Epochs, it was found that the obtained accuracy is quite high, at 0.995 or 99.5%. Additionally, Precision

was 0.799 or 79.9%, Recall reached 0.794 or 79.4%, and the F1-Score was 0.796 or 79.6%. Overall, the

model was able to effectively detect the four types of animals it was trained on, showing a balance

between Precision and Recall, although the Precision, Recall, and F1-Score values were still relatively

low. This occurred because, despite many correct predictions, there were still some errors, particularly

in the Undetected class. This class refers to objects that the model was unable to recognize as any of the

existing classes (Ayam, Kucing, Kambing, Sapi).

3.3. The detection analysis with the application's web system

3.3.1. Research model integration on the application web system

The study successfully integrated the yolov8 model into a web application to detect four types

of animals, chickens, cats, goats, and cows real-time using a laptop camera. Testing indicates that the

model trained with 125 epochs and the 85% data scheme for training, 10% for validation, and 5% for

testing, produces high accuracy during the training process.

1314

ICONBIT 2025

 To implement this model on the application web, minimum laptop specs with i3 core Intel

processor, 8 GB RAM, minimum SSD storage of 20 GB, and Windows 10 operating systems are

required. Virtual GPU (Graphics Processing Units) use is also recommended to accelerate the training

process.

After that, the Web Application will be implemented on a previously trained model using the

API (Application Programming Interface) from the previously trained model obtained from Roboflow,

as illustrated in Figure 9. Deployment of the model was carried out using Python and the Flask

framework, with installation and setup of the virtual environment via Anaconda. Flask is used as a

microframework to develop a web application that integrates the YOLOv8 model for predictions.

Additionally, several folders for HTML, CSS, and JavaScript need to be prepared as the visual elements

of the website to be used.

Figure 9. Deployment of Pre-Trained Models

Next, to develop the web application, the repository containing the ‘app.py’ file is cloned or

downloaded, and a new environment is created using the Anaconda prompt with the command ‘conda

create --name animals_env python=3.10.0’. This is followed by activating the environment using ‘conda

activate animals_env’. All necessary dependencies are installed by running ‘pip install -r

requirements.txt’.

The web application is developed using Flask, with ‘app.py’ as the application's entry point.

The trained YOLOv8 model is utilized for prediction through the ‘/predict’ endpoint. The web

application is run with the command ‘python app.py’, and it can be accessed through the provided

link, such as http://127.0.0.1:5000/.

In Figure 10, the initial page of the web application is displayed, featuring two main menus:

Home and Deteksi. The Deteksi feature is used to perform real-time detection of four animal types

Chicken, Cat, Goat, and Cow using a laptop camera. To access this feature, you can click the Start button

or directly select Deteksi from the main menu at the top center, which will navigate to the Detection

page.

(a) (b)

Figure 10. Display of the initial web page (a) and detection page (b) after deploying

3.3.2. Detection Testing Results with the Web Application System

1315

ICONBIT 2025

The testing was conducted using two methods: image-based testing and direct observation of live

animals. The image-based testing results can be seen in Figure 11. The system successfully detected

chicken, cat, goat, and cow objects with accuracy matching the ground truth, indicating that the model

has been well-trained.

(b) (b)

(c) (d)

Figure 11. Detection results using real-time images of Chickens (a), Goats (b), Cats (c), and Cows (d).

The live animal testing results are shown in Figure 12. Detection was performed in real-time using a

laptop camera. The results for the cow, goat, and cat show that the system could detect the objects, but

the bounding boxes often did not align with the actual position of the objects. This was due to several

factors, such as the similarity of the object’s color to the background, the large number of animals, and

the influence of sunlight. However, in the chicken testing, the system successfully detected the object

with high accuracy due to the absence of other disturbances.

(a) (b)

1316

ICONBIT 2025

(c) (d)

Figure 12. Detection results of real farmed animals, including Chickens (a), Goats (b), Cats (c), and

Cows (d) in real-time.

Conclusion

The conclusions of this study indicate that the YOLOv8 algorithm successfully detected four types of

animals (Chicken, Cat, Cow, and Goat) with high accuracy under controlled conditions using static

images. The best performance was achieved with a data split scheme of 85% for training, 15% for

validation, and 5% for testing, yielding an Accuracy of 0.995, Precision of 0.794, Recall of 0.799, and an

F1 Score of 0.796. The web application system, tested in real-time, also successfully detected animals

with 100% accuracy. However, the model faced challenges in real-world scenarios involving

movement, changing lighting, and multiple objects. To improve detection performance in real

environments, it is recommended to increase the training data, perform data augmentation, optimize

hyperparameters, and adjust the model to handle undetected objects and diverse environmental

conditions. Implementing these recommendations is expected to enhance the system's accuracy and

reliability in various conditions.

References

Anand, D., Raj, M. A. M., & Priya, C. S. (2021). Real-time animal detection using YOLO and tracking

using DeepSORT. Journal of Physics: Conference Series, 1916, 012107.

https://doi.org/10.1088/1742-6596/1916/1/012107

Chai, Y., Du, M., & Yuan, Y. (2022). YOLOv5s-based detection algorithm for beef cattle in a complex

natural pasture. Computers and Electronics in Agriculture, 200, 107225.

https://doi.org/10.1016/j.compag.2022.107225

1317

ICONBIT 2025

Chen, T., Li, Y., & Zhang, J. (2022). Target detection algorithm for goose behavior based on improved

YOLOv5. Sustainability, 14(22), 14946. https://doi.org/10.3390/su142214946

Han, L., Zhang, C., Yang, Z., Liu, S., & Li, Y. (2023). Animal detection and recognition using improved

YOLOv5 algorithm. Sustainable Computing: Informatics and Systems, 38, 100791.

https://doi.org/10.1016/j.suscom.2023.100791

Han, Z., Xie, J., Yu, D., & Yuan, H. (2022). YOLOv4-based multi-object detection algorithm for

recognizing farm animals. International Journal of Agricultural and Biological Engineering, 15(1),

181–188. https://doi.org/10.25165/j.ijabe.20221501.6556

Irwansyah, E., & Firmansyah, R. (2021). YOLOv4 algorithm for detection of wildlife species in the forest.

International Journal of Artificial Intelligence Research, 5(1), 31–42.

https://doi.org/10.29099/ijair.v5i1.290

Kadam, R. A., & Nikam, S. S. (2020). Real-time animal detection using convolutional neural networks.

International Journal of Advanced Research in Science, Communication and Technology, 10(2), 220–

226. https://doi.org/10.48175/ijarsct-2324

Khadijah, K., & Saepudin, A. (2021). Deteksi hewan liar menggunakan YOLOv3 untuk keamanan

kendaraan di jalan. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi,

7(2), 103. https://doi.org/10.24014/coreit.v7i2.14593

Liang, J., Song, T., He, X., & Wang, Y. (2021). Performance evaluation of YOLO and Faster R-CNN for

real-time pig detection. Information Processing in Agriculture, 8(4), 758–767.

https://doi.org/10.1016/j.inpa.2020.10.005

Liu, Y., Zheng, Y., Zeng, Y., & Wang, Z. (2023). Animal detection using YOLOv8 with lightweight

attention modules. IEEE Access, 11, 64395–64406. https://doi.org/10.1109/ACCESS.2023.3278672

Lu, D., Zhang, H., Liu, B., & Yang, Y. (2023). YOLOv7-based cattle detection in complex environments.

IEEE Access, 11, 8703–8712. https://doi.org/10.1109/ACCESS.2023.3241830

Munir, M., Khan, S., Khan, A. A., & Jan, Z. (2021). Real-time animal detection system using YOLOv5.

Procedia Computer Science, 184, 781–788. https://doi.org/10.1016/j.procs.2021.03.097

Nuraeni, A., Dewi, R. K., & Suryani, D. (2022). Deteksi hewan ternak menggunakan YOLOv5. Jurnal

Riset Informatika, 4(1), 18–24. https://doi.org/10.30656/jri.v4i1.4275

Putri, A. D., & Lestari, R. I. (2023). Deteksi hewan ternak berbasis YOLOv5 dan Google Colab. Jurnal

Pengembangan Teknologi Informasi dan Ilmu Komputer, 7(3), 321–330.

Rahayu, L., Sarwinda, D., & Wulandari, F. (2023). Implementasi deep learning object detection YOLOv5

untuk identifikasi satwa liar endemik Papua. Jurnal Teknologi Informasi dan Ilmu Komputer

(JTIIK), 10(4), 821–830. https://doi.org/10.25126/jtiik.2023105643

Raj, D. P., & Bhavya, K. R. (2023). Application of deep learning algorithms for classification and

detection of animals using YOLO. International Journal of Research Publication and Reviews, 4(2),

439–443.

Sahab, S., Saputra, R., & Sulistijono. (2022). Animal detection and counting using YOLOv5 and

DeepSORT. Jurnal Elektro dan Telekomunikasi Terapan, 9(2), 152–158.

https://doi.org/10.25124/jett.v9i2.5781

1318

ICONBIT 2025

Suji, K. R. (2023). Deep learning based animal species detection using YOLOv7. International Journal

of Advanced Research in Science, Communication and Technology, 17(1), 166–170.

https://doi.org/10.48175/IJARSCT-2916

Ultralytics. (2023). YOLOv8 Docs. Retrieved from https://docs.ultralytics.com

Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2023). You Only Learn One Representation: Unified

network for multiple tasks. arXiv preprint. https://arxiv.org/abs/2306.11527

Wulandari, M., Sari, N. P., & Kurniawan, D. E. (2021). Pengembangan sistem deteksi hewan dengan

YOLO berbasis Android. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(12),

4665–4672.

Xu, L., Yang, W., & Zhang, Q. (2022). A YOLO-based animal detection and tracking method for smart

farming. Sensors, 22(11), 4190. https://doi.org/10.3390/s22114190

Yuan, W., Jiang, J., & Huang, Y. (2022). Research on pig behavior detection based on YOLOv5. Sensors,

22(23), 9324. https://doi.org/10.3390/s22239324

Zhang, Y., Fang, S., & Xu, W. (2022). Real-time livestock detection using an improved YOLOv4-tiny

algorithm. Sensors, 22(15), 5521. https://doi.org/10.3390/s22155521.

