Proceeding of International Joint Conference on UNESA

Electrochemical Detection of Nitrite Using a Fe₃O₄/Nafion-Modified Gold Wire Electrode

Ruzain Rafie Sukma Putra¹, Harmami¹, Kartika A Madurani¹, Heru Suryanto², Daimon Syukri³, Masato Tominaga⁴, Fredy Kurniawan^{1*}

¹Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
²Department of Mechanical Engineering, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
³Department of Food and Agricultural Product Technology, Andalas University, Limaum Manis, Padang, 25163, Indonesia
⁴Department of Chemistry and Applied Chemistry, Saga University, Saga, 840-8502, Japan

OPEN ACCESS EY SA

ABSTRACT

Keywords: Electrochemical Fe₃O₄ Nanoparticles Gold Electrode Nafion Nitrite Ions This study presents the development and evaluation of an electrochemical sensor for nitrite detection based on magnetite nanoparticles (Fe₃O₄ NPs) and a Nafion-modified gold wire electrode. Fe₃O₄ NPs were synthesized through an electrolysis route and subsequently characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (FE-SEM/EDX). The XRD diffraction pattern is similar to the standard JCPDS card number 19-0629, confirming the structure of Fe₃O₄ NPs. Morphology analysis using FE-SEM revealed Fe₃O₄ NPs with an average size measured to be 123.4 nm. Cyclic voltammetry (CV) measurements demonstrated a high oxidation peak for nitrite detection using the proposed electrode at neutral pH (pH 7). CV analysis towards $K_3[Fe(CN)_6]$ shows that the proposed electrode gave the highest current peak. The specific surface area of the proposed electrode was found to be 0.149 cm². Quantitative analysis using CV showed a limit of detection (LOD) of 4.4 ppm. Using the amperometry techniques, the LOD produced was as low as 0.00105 ppm. These findings highlight the potential of the Fe₃O₄ and Nafion-modified gold electrode for sensitive nitrite analysis.

INTRODUCTION

Nitrite (NO_2^-) is one of the ions that are a result of the chemical conversion of nitrogen-containing compounds (Hasan et al., 2022). Nitrite ion usually exist as a preservative in processed food and as a contaminant in water (W. Wang et al., 2025). Excessive levels of nitrite intake through food or drinking water can pose a significant health risk. For instance, it can lead to methemoglobinemia in humans. Therefore, the European Union Scientific Committee on Food has set the maximum intake of nitrite to 0.06 mg/kg body weight, while the WHO states that the maximum allowable concentration of nitrite in drinking water should not exceed 3 mg/L (Du et al., 2023; W. Wang et al., 2025). Therefore, it is crucial to develop a simple, accurate, and sensitive analytical method to control food safety.

The advancement of nitrite analysis has been developed using many methods such as spectroscopy and chromatography. The methods mentioned before had advantages such as simple and wide application, but they also had disadvantages of time-intensive pre-treatment, low accuracy, and low selectivity (Sari et al., 2024; Y. Wang et al., 2025). One of the alternative methods for nitrite detection is the electrochemical method, which has been used to detect nitrite in food and water samples. The reason electrochemical sensors were chosen was due to their advantages, which include ease of use, low cost, and high sensitivity. Electrochemical methods can also be improved by modifying the

working electrode to achieve the best results (Chen et al., 2025; Du et al., 2023; Sari et al., 2024; Y. Wang et al., 2025).

Over recent years, considerable work has been done on electrode modification to achieve lower detection limits and improved selectivity. Transition metals have been widely used in electrochemical detection due to their unique properties, such as high catalytic activity, biocompatibility, and conductivity. Gold (Au) wire, as the main working electrode, has been used to detect many compounds and ions (Chu et al., 2023; Hutapea et al., 2025; Sari et al., 2024). The use of a bare gold electrode is shown to have low sensitivity and selectivity towards electrochemical detection. Therefore, it is crucial to modify the surface of the electrode to increase the signal produced during the analysis. Fe₃O₄ (magnetite) nanoparticles (NPs) are a good modification of the electrode surface due to their properties. One of which is good conductivity, good catalytic activity, high surface area, and easy preparation (Bhuvaneswari et al., 2023; Riahifar et al., 2021; Shalali et al., 2022). However, some disadvantages of Fe₃O₄ are that they are prone to aggregation and oxidation (El-Desoky et al., 2022). To prevent the aggregation of Fe₃O₄ NPs during analysis, some method can be deployed, one of which is using a conductive polymer. Nafion (perfluorinated sulfonic acid polymer) is a promising candidate for surface modification of Fe₃O₄ NPs to prevent agglomeration. Nafion as a surface modification is also shown to exhibit excellent resistance to electrode fouling and to increase the voltametric signal during analysis (Alemayehu et al., 2023; Rabbani et al., 2024; Yi et al., 2024).

In this work, Fe₃O₄/Nafion was modified onto the surface of a gold electrode to detect nitrite. Fe₃O₄ was synthesised through an electrochemical synthesis using an iron plate. The obtained Fe₃O₄ is then mixed with a Nafion solution and subjected to sonication. The analysis will be done using cyclic voltametric (CV) and amperometric methods to obtain the limit of detection (LOD) in nitrite detection.

RESEARCH METHOD

Chemicals and Reagents

The working electrode consists of 7 cm of 24-karat gold wire. The iron plate with a dimension of 10 cm x 2 cm x 0,2 cm was obtained from EELIC China. Sodium Sulfate Anhydrous (Na₂SO₄, 99%) was obtained from SAP CHEMICALS, Indonesia. Demineralized water and ethanol (CH₃OH, 98%) were purchased from PT. Brataco Chemicals, Indonesia. Sodium Nitrite analytical grade, 5% Nafion solutions, Potassium ferricyanide (K₃[Fe(CN)₆]), and potassium chloride (KCl) were obtained from Sigma Aldrich.

Instrumentation

The Fe₃O₄ was characterized using X-ray diffraction (XRD) (X'Pert Pro MPD), and Field emission scanning electron microscopy-dispersive X-Ray spectroscopy (FESEM/EDX) (Hitachi Regulus 8220). The electrochemical measurements were done using Autolab Methrom PGSAT 128N.

Synthesis of Magnetite (Fe₃O₄)

The synthesis of Fe₃O₄ was carried out using the electrolysis method based on previous work, with a slight adjustment (Yu et al., 2022). The iron plate is cleaned using sandpaper. The iron plate was then washed using demineralized water and ethanol. The iron plate, which acts as both the anode and cathode, is then connected to a power supply. Both electrodes were immersed in a 0.01 M Na₂SO₄ solution with a depth of 2 cm. The distance between the electrodes was kept at 2 cm. The synthesis was carried out at 50 V for 30 minutes. The Fe₃O₄ were formed as colloids dispersed in the solution. The Fe₃O₄ obtained were dried in the oven at 80 °C overnight.

Fabrication of Fe₃O₄/Nafion modified gold electrode.

The gold wire surface was polished using sandpaper and then submerged in an equal mixture of ethanol and water, and sonicated for 30 minutes to clean the electrode. After that, the electrode was left to dry. The gold wire was covered in shrinkage cable, leaving a 1 cm opening at the tip of both ends of the electrodes.

The electrode modifier was prepared by mixing 1 gram of Fe₃O₄ nanoparticles obtained, 100 μ L of 5% Nafion solution was added as a binding agent, and 200 μ L of demineralised water to help turn the composite into a paste. The mixture was then sonicated for 30 minutes, and the end result was a paste of Fe₃O₄/Nafion composite. The mixture was then applied to the surface of the gold electrode and left to dry at room temperature inside a desiccator for 12 hours before use.

Electrochemical Measurement

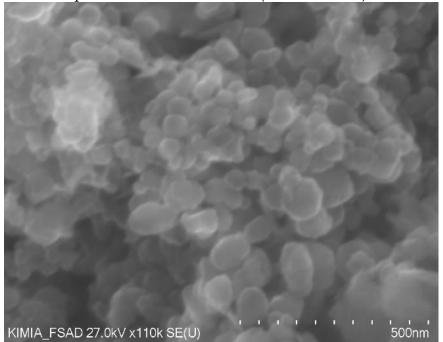
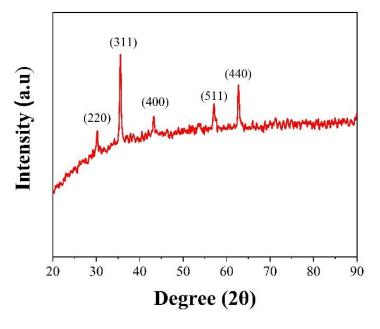
The electrochemical measurements were performed using cyclic voltammetry (CV). The three-electrode cell system consists of platinum as the counter electrode (CE), Ag/AgCl (KCl 3 M) as the reference electrode (RE), and the proposed electrode as the WE. The electrochemical performance of electrodes toward nitrite analysis was observed using CV -0.4 to 1.2 V and a scan rate of 100 mV/s. The effective surface area between the electrode was measured in $10 \text{ mM K}_3[\text{Fe}(\text{CN})_6]$ n in 0.1 M KCl solution using CV techniques with a potential range of -0.8 to 0.8 V and a scan rate of 100 mV/s. The various concentrations of nitrite solution with CV techniques were measured in the various nitrite solution with amperometric techniques were measured in the various nitrite concentrations of 1-11 ppm.

RESULTS AND DISCUSSION

Fe₃O₄ Characterization

Fe-SEM analysis is shown in Figure 1. The analysis shows that the morphology of Fe₃O₄ displayed at a magnification of 110,000x shows the nanoscale of Fe₃O₄ nanoparticles with a plate-like shape. Fe₃O₄ shows that the average size of Fe₃O₄ was 123.4 nm.. The Diffractogram of the Fe₃O₄ is shown in Figure 2. The diffractogram shows five peaks that correspond to (220), (311), (400), (511), and (440), respectively. The result indicates a spinel structure of Fe₃O₄, which is similar to the standard JCPDS card no. 19-0629. The previous work done by Yu in 2022 also found the same result on the XRD analysis towards Fe₃O₄ nanoparticles using the electrolysis method (Yu et al., 2022).

The reaction mechanism starts with the oxidation of Fe to Fe²⁺ and Fe³⁺ in the anode. At the cathode, water is reduced, producing hydroxide ion (OH-). The Fe²⁺ and Fe³⁺ ions will move towards the cathode and then react with the 8OH-. The end product of the reaction are Fe₃O₄ nanoparticles as the and water (Yu et al., 2022).

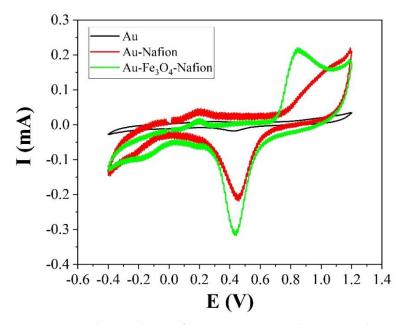
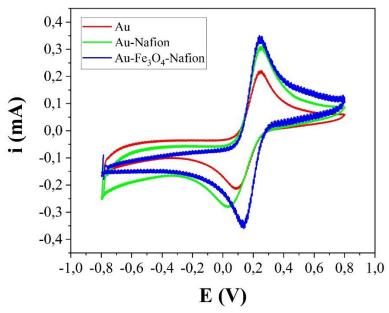

Figure 1. SEM picture Fe₃O₄ NPs and diffractogram of Fe₃O₄ NPs

Figure 2. Diffractogram of Fe₃O₄ NPs


Electrochemical Measurement on Different Electrodes

The electrochemical measurements of nitrite using three different electrodes is shown in Figure 3. The bare gold electrode (black line) shows a really small anodic current peak (ipa) and a small cathodic current peak (ipc). The Nafion-modified gold electrode (red line) shows a higher ipa and ipc during nitrite analysis compared to the bare gold electrode, but it didn't show a distinctive oxidation peak for nitrite. The Fe₃O₄/Nafion-modified gold electrode (green line) shows a higher peak in both ipa and ipc compared to both bare gold and the Nafion-modified gold electrode. The proposed electrode also showed a faster electron transfer during the nitrite analysis. This can be caused by the Fe₃O₄ properties that are conductive and show an excellent catalytic activity; these properties can enhance the electron transfer towards the analyte (Bhuvaneswari et al., 2023; Riahifar et al., 2021; Shalali et al., 2022). This means that the proposed electrode shows a higher sensitivity towards nitrite during analysis.

Figure 3. Electrode performance towards nitrite detection

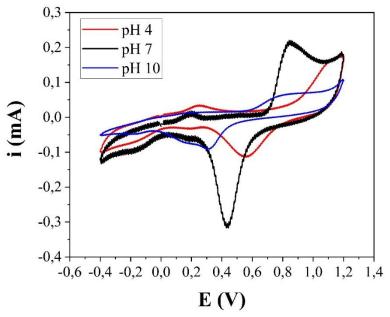

Electrochemical measurement in a 10 M K₃[Fe(CN)₆] solution is conducted to obtain a specific area of the electrode (Figure 4). The bare gold electrode shows to exhibit a small ipa and ipc compared to the gold modified with Nafion and gold modified Fe₃O₄/Nafion. The gold electrode modified with Nafion showed an increase of ipa and ipc. The proposed electrode produces a higher signal for both ipa and ipc than a bare gold electrode or a Nafion-modified gold. The proposed electrode showed the highest ipa and ipc compared to the other electrode, and it also exhibits the fastest electron transfer. Using the Randles-Sevcik equation and the diffusion constant of K₃[Fe(CN)₆], the effective surface area of the bare gold electrode, the gold electrode modified with Nafion, and the proposed electrode, respectively, is 0.094, 0.129, and 0.149 cm².

Figure 4. Electrode performance towards K₃[Fe(CN)₆] detection

Efffect of pH on Nitrite Detection

The electrochemical measurement of nitrite in 0.1 M PBS with a variation of pH value is conducted using the Fe₃O₄/Nafion-modified gold electrode. Figure 5 shows the different performance of the pH condition during nitrite measurement. The analysis of nitrite in PBS pH 4 shows no anodic peak during the analysis, only showing the reduction peak (red line). Analysis of nitrite in PBS pH 10 shows a small ipa and ipc during the nitrite analysis (blue line). Analysis of nitrite in PBS pH 7 (black line) shows a good high ipa compared to other PBS variations. The pH 7 is a perfect condition for the nitrite analysis, which could be because at pH 7, the nitrite ion can keep its form without undergoing an oxidation process, turning it into the nitrate ion. The same optimum result has also been found at pH 7 for nitrite oxidation in the previous work using different electrodes (Sari et al., 2024).

Figure 5. pH analysis of nitrite detection

Calibration curve for Nitrite determination by Fe₃O₄/Nafion modified Au electrode

The electrochemical measurement of nitrite analysis using Fe3O4/Nafion modified Au electrode is shown in Figure 6. The increase of nitrite concentration from 10 to 150 ppm shows an increase in ipa . The ipc, as shown in Figure 6, does not indicate the reduction of nitrite, since the addition of nitrite gave no increase in the reduction peak. The reduction peak could be the result of dissolved hydrogen reduction. The only possible reaction that can occur is the oxidation of nitrite. Therefore, nitrite measurement and limit of detection (LOD) analysis will be focused on Ipa rather than Ipc. The Ipa is plotted against concentrations (ppm), which gives the linear equation of ipa=3.818x10-3[NO2-]+1.142x10-1 with $R^2 = 0.998$ (Figure 7). The limit of detection and sensitivity values are calculated and produce values of 4.4 ppm and 0.025 mA ppm cm-2 for CV techniques. The reduction peak, as shown in Figure 6, does not indicate the reduction of nitrite, since the addition of nitrite gave no increase in the reduction peak. The reduction peak could be the result of dissolved hydrogen reduction.

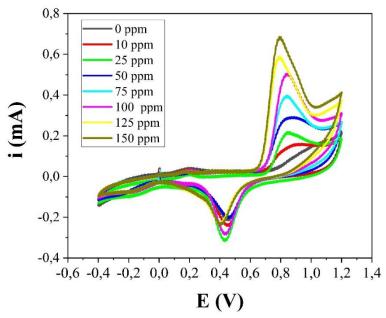


Figure 6. Cyclic Voltammogram of nitrite detection in different concentration

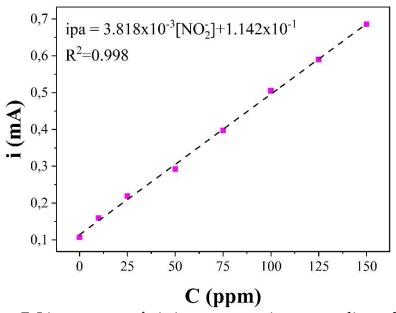


Figure 7. Linear curve of nitrite concentration vs anodic peak current

Amperometric analysis for Nitrite ion determination

The analysis using amperometry methods shows an increase in current with an increase in nitrite concentration (Figure 8). The oxidation of nitrite causes the current in amperometry. This can be observed when the addition of nitrite to the solution increases the current and remains stable for 50 50-second duration. The plot between concentration and current produces a linear curve of ipa=1.344[NO2-]+0.577 with an R^2 =0.998 (Figure 9). The detection limit was calculated to be 0.00105 ppm with a sensitivity of 9.02 μ A ppm

cm-2. The results of both methods are compared to the previous work on nitrite analysis using different electrodes, which can be found in Table 1. The results of the LOD produce more sensitive detection towards the nitrite analysis.

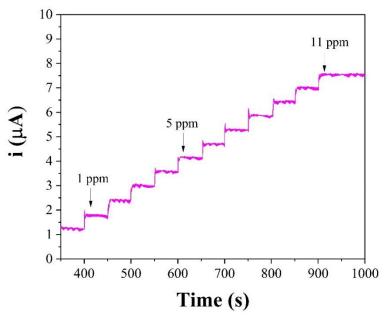


Figure 8. Amperometry measurement of nitrite in different concetration

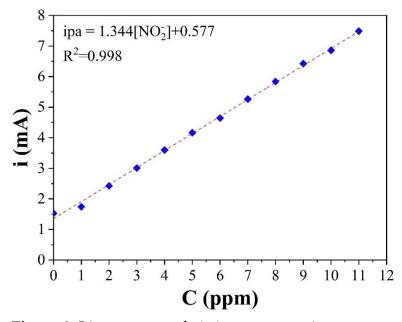


Figure 9. Linear curve of nitrite concentration vs current

Table 1. Limit Detection Result compared with other electrode

Electrodes	Methods	Range	LOD (ppm)	Source
ERGO/AuNPs/SPCE	DPV	1-6000 uM	0.00598	(Jian et al., 2018)
MWCNTs/Co-MOF/GCE	DPV	80-1100 μΜ	8.282	(Salagare et al., 2022)
Au-NPs/PPyC/SrTiO3 NCs/PEDOT:PSS/GCE	CV	150-1500	0.873	(Faisal et al., 2024)
Fe ₃ O ₄ /SiO ₂ /GCE	DPV	0.01-1 mM	0.153	(Zhang et al., 2024)
CuO/MnO ₂ /SPE	LSV	0.2-60 μΜ	0.00327	(Farina et al., 2025)
Fe ₃ O ₄ /Nafion modified Gold Wire	CV Amperometric	10-150 ppm 1-11 ppm	4.4 0.001	This Work

CONCLUSION

The Fe₃O₄/Nafion-modified gold electrode has been successfully fabricated. Fe₃O₄ is synthesized with electrolysis methods, shows a particle size averaging at 123.4 nm, and the diffractogram shows the formation of Fe₃O₄ NPs that are similar to JCPDS card no. 19-0629. CV analysis towards nitrite and K_3 [Fe(CN)₆] analysis shows a good result compared to the bare gold electrode and the gold electrode coated with Nafion. The pH analysis using CV methods shows the optimum pH condition during nitrite analysis at pH 7. LOD analysis of nitrite measurement reaching up to 4.4 ppm using the CV method, and 0.00105 ppm for the amperometry method.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Higher Education, Science, and Technology of the Republic of Indonesia (Grant No. 017/C3/DT.05.00/PL/2025-1119/PKS/ITS/2025).

REFERENCES

Alemayehu, D., Bitew, Z. & Yohannes, Y. B. (2023). Development of a new electrochemical sensor based on nafion/cobalt doped bismuth ferrite nanoparticle modified glassy carbon electrode for detection of hydrogen peroxide. *Sensing and Bio-Sensing Research*, 42, 100586. https://doi.org/10.1016/j.sbsr.2023.100586

Bhuvaneswari, C., Elangovan, A., Sudhan, N., Vinodhkumar, G., Saravanan, S., Balasubramanian, V., Sharmila, C. & Karuppaiah, S. (2023). A low-cost hybrid GQDs/Fe₃O₄/polypyrrole nanocomposite based chemo-sensor for electrochemical non-enzymatic selective determination of creatinine in biological samples. *Microchemical Journal*, 194(August), 109259. https://doi.org/10.1016/j.microc.2023.109259

Chen, Y., Li, S., Gao, R., Shi, Y., Sun, Y., Waterhouse, G. I. N. & Xu, Z. (2025). Design of an injectable magnetic hydrogel with porous structure and electrocatalytic activity for the sensitive electrochemical detection of nitrite in foods. *Food Chemistry*,

- 473(November 2024), 143030. https://doi.org/10.1016/j.foodchem.2025.143030
- Chu, Y., Zhou, H., Wang, X., Zhang, H., Zhao, L., Xu, T., Yan, H. & Zhao, F. (2023). A flexible and self-supported nanoporous gold wire electrode with a seamless structure for electrochemical ascorbic acid sensor. *Microchemical Journal*, 186(November 2022), 108259. https://doi.org/10.1016/j.microc.2022.108259
- Du, X., Zhang, Y., Liu, M., Tian, X. & Cao, Z. (2023). An environmentally friendly, layer-by-layer assembled electrode for ultrafast electrochemical detection of nitrite in water. *Journal of Applied Electrochemistry*, 53(12), 2443–2455. https://doi.org/10.1007/s10800-023-01922-y
- El-Desoky, H. S., Beltagi, A. M., Ghoneim, M. M. & El-Hadad, A. I. (2022). The first utilization of graphene nano-sheets and synthesized Fe₃O₄ nanoparticles as a synergistic electrodeposition platform for simultaneous voltammetric determination of some toxic heavy metal ions in various real environmental water samples. *Microchemical Journal*, 175, 106966. https://doi.org/10.1016/j.microc.2021.106966
- Faisal, M., Alam, M. M., Ahmed, J., Asiri, A. M., Algethami, J. S., Altholami, R. H., Harraz, F. A. & Rahman, M. M. (2024). Efficient nitrite determination by electrochemical approach in liquid phase with ultrasonically prepared gold-nanoparticle-conjugated conducting polymer nanocomposites. *Frontiers in Chemistry*, 12. https://doi.org/10.3389/fchem.2024.1358353
- Farina, R., Scalese, S., Alberti, A., Privitera, S. M. S., Capuano, G. E., Corso, D., Screpis, G. A., Reina, S. C. R., Condorelli, G. G., Coniglio, M. A. & Libertino, S. (2025). Electrocatalytical Nitrite Oxidation via Manganese and Copper Oxides on Carbon Screen-Printed Electrode. *Sensors*, 25(12), 3764. https://doi.org/10.3390/s25123764
- Hasan, M. R., Islam, T., Hasan, M. M., Chowdhury, A. N., Ahammad, A. J. S., Reaz, A. H., Roy, C. K., Shah, S. S., Al-Imran & Aziz, M. A. (2022). Evaluating the electrochemical detection of nitrite using a platinum nanoparticle coated jute carbon modified glassy carbon electrode and voltametric analysis. *Journal of Physics and Chemistry of Solids*, 165(June 2021), 110659. https://doi.org/10.1016/j.jpcs.2022.110659
- Hutapea, T. P. H., Suprapto, Syaputra, M. Y. & Kurniawan, F. (2025). Green chemistry approach to formaldehyde detection using fish albumin-modified gold electrodes. *Global Journal of Environmental Science and Management*, 11(2), 791–804. https://doi.org/10.22034/gjesm.2025.02.23
- Jian, J. M., Fu, L., Ji, J., Lin, L., Guo, X. & Ren, T. L. (2018). Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. *Sensors and Actuators, B: Chemical*, 262, 125–136. https://doi.org/10.1016/j.snb.2018.01.164
- Rabbani, G., Ehtisham Khan, M., Zakri, W., Vahid Khan, M. & Bashiri, A. H. (2024). An electrochemical immunosensor based on AgNPs/Nafion-GCE for detection of salivary lactoferrin: Alzheimer's disease biomarker. *Microchemical Journal*, 207(November). https://doi.org/10.1016/j.microc.2024.112079
- Riahifar, V., Haghnazari, N., Keshavarzi, F. & Nasri, F. (2021). Design a high sensitive

- electrochemical sensor based on immobilized cysteine on Fe₃O₄@Au core-shell nanoparticles and reduced graphene oxide nanocomposite for nitrite monitoring. *Microchemical Journal*, 166(October 2020), 106217. https://doi.org/10.1016/j.microc.2021.106217
- Salagare, S., Shivappa Adarakatti, P. & Venkataramanappa, Y. (2022). Designing and construction of carboxyl functionalised MWCNTs/Co-MOFs-based electrochemical sensor for the sensitive detection of nitrite. *International Journal of Environmental Analytical Chemistry*, 102(17), 5301–5320. https://doi.org/10.1080/03067319.2020.1796989
- Sari, N. P., Mulyawati, M., Syahputra, M. Y., Madurani, K. A. & Kurniawan, F. (2024). A Novel ultrasensitive nitrite ion detection using tungsten trioxide-modified gold electrode. *Electrochimica Acta, 497*(January), 144590. https://doi.org/10.1016/j.electacta.2024.144590
- Shalali, F., Cheraghi, S. & Taher, M. A. (2022). A sensitive electrochemical sensor amplified with ionic liquid and N-CQD/Fe₃O₄ nanoparticles for detection of raloxifene in the presence of tamoxifen as two essentials anticancer drugs. *Materials Chemistry and Physics*, 278(December 2021), 125658. https://doi.org/10.1016/j.matchemphys.2021.125658
- Wang, W., Cai, Q., Dai, C., Li, J., Xu, H., Zhang, W., Chen, Y. & Hu, J. (2025). Construction of an electrochemical sensor based on a conductive Ni₃(HHTP)₂ nanowires array functionalized with ag nanoparticles@WS₂QDs for nitrite detection. *Food Chemistry*, 473(January), 143126. https://doi.org/10.1016/j.foodchem.2025.143126
- Wang, Y., Qiu, T., Wang, J., Feng, J., Zhao, S., Chen, H., Gong, L., Wang, Z., Zhang, Y., Yin, S., Zhu, Y., Deng, J., Chen, S., Tao, M. & Li, L. (2025). Hydrothermal synthesis of iron foam-supported Co3O4-based sensor electrodes for electrochemical detection of nitrite. *Materials Today Communications*, 43(January). https://doi.org/10.1016/j.mtcomm.2025.111656
- Yi, Z., Zhang, Y., Gao, X., Li, S., Li, K., Xiong, C., Huang, G. & Zhang, J. (2024). Sensitive electrochemical immunosensor for rapid detection of Salmonella in milk using polydopamine/CoFe-MOFs@Nafion modified gold electrode. *International Journal of Food Microbiology*, 425(April), 110870. https://doi.org/10.1016/j.ijfoodmicro.2024.110870
- Yu, J., Wang, B., Lu, Q., Xiao, L., Ma, X., Feng, Y. & Qian, Y. (2022). Fabrication of Fe₃O₄ nanoparticles by using cathode glow discharge electrolysis plasma and its electrochemical properties. *Electrochimica Acta*, 427(May), 140843. https://doi.org/10.1016/j.electacta.2022.140843
- Zhang, M., Yang, Y. & Guo, W. (2024). Electrochemical sensor for sensitive nitrite and sulfite detection in milk based on acid-treated Fe₃O₄@SiO₂ nanoparticles. *Food Chemistry*, 430(February 2023), 137004. https://doi.org/10.1016/j.foodchem.2023.137004