Adoption of the GoFood Application: The Role of Perceived Usefulness, Perceived Ease of Use, Subjective Norms, and IT Adoption Intention
Keywords:
Online Food Delivery (OFD), Subjective norms, Technology Acceptance Model (TAM) TheoryAbstract
The purpose of this study is to identify factors that influence consumer behavioral intentions in the actual use of adopting the GoFood food delivery application. Based on TAM (Technology Acceptance Model) theory, we examined the influence of perceived usefulness, perceived ease of use, subjective norms, and behavioral intentions on actual use in the context of using GoFood OFD. Data was collected from 119 users and analyzed using the SEM-PLS (Structural Equation Modeling-Partial Least Squares) method. The results showed that perceived usefulness, perceived ease of use, subjective norms have an effect on behavioral intentions, but perceived ease of use, subjective norms have no effect on actual use, while perceived usefulness has a direct effect on actual use. In addition, behavioral intentions successfully mediate the influence of perceived usefulness, perceived ease of use, subjective norms, and behavioral intentions on actual use in the context of using OFD GoFood. This study has novelty by adding the subjective norms variable, where this variable has not been widely used in research on the use of OFD GoFood. The limitations and implications based on the findings to demonstrate the importance of the variables relationship are also discussed in this study.
References
Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238–256. https://doi.org/10.1016/j.chb.2015.11.036
Al Amin, M., Arefin, M. S., Alam, M. R., Ahammad, T., & Hoque, M. R. (2021). Using Mobile Food Delivery Applications during COVID-19 Pandemic: An Extended Model of Planned Behavior. Journal of Food Products Marketing, 27(2), 105–126. https://doi.org/10.1080/10454446.2021.1906817
Aliandrina, D., Barata, D. D., & Peranginangin, P. (2022). ANALISIS PENGARUHNYA PERCEIVED EASE OF USE, PERCEIVED USEFULNESS, DAN PERCEIVED BEHAVIORAL CONTROL TERHADAP AKTUALISASI PENGGUNAAN PADA MAHASISWA KOTA BATAM. Journal of Global Business and Management Review, 4, 27–35. https://doi.org/10.37253/jgbmr.v4i1.6805
Alkhawaja, M. I., Sobihah, M., Halim, A., Abumandil, M. S. S., & Al-adwan, A. S. (2022). System Quality and Student ’ s Acceptance of the E-learning System : The Serial Mediation of Perceived Usefulness and Intention to Use. CONTEMPORARY EDUCATIONAL TECHNOLOGY, 14(2). https://doi.org/10.30935/cedtech/11525
Astiti, N. P. Y., Prayoga, I. M. S., & Imbayani, I. G. A. (2023). DIGITAL TRANSFORMATION THROUGH TECHNOLOGY ACCEPTANCE MODEL ADOPTION FOR SME RECOVERY ECONOMY DURING THE COVID-19 PANDEMIC. Jurnal Aplikasi Manajemen, 21(1), 153–166. https://doi.org/10.21776/ ub.jam.2023.021.1.11.
Asyrafi, F. H., & Hidayat, A. (2023). The influence of subjective norms and perception of food safety toward behavioral intention to use and continuance behavior. International Journal of Research in Business and Social Science (2147- 4478), 12(3), 207–215. https://doi.org/10.20525/ijrbs.v12i3.2499
Banjarnahor, A. R. (2021). Technology Acceptance Model and Theory of Planed Behavior: Mapping Literature Review. Golden Ratio of Mapping Idea and Literature Format, 1(2), 134–166. https://doi.org/10.52970/grmilf.v1i2.91
Belanche, D., & Flavi, M. (2020). Mobile Apps Use and WOM in the Food Delivery Sector : The Role of Planned Behavior , Perceived Security and Customer Lifestyle Compatibility. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/su12104275
Bregashtian, B., & S.E., M.M., CFP2, D. C. H. (2021). The Effect of Perceived Ease of Use, Usefulness and Risk on Intention to Use the Go-Food Application in Surabaya and Sidoarjo. KnE Social Sciences, 2021, 169–183. https://doi.org/10.18502/kss.v5i5.8807
Choi, J. (2020). User Familiarity and Satisfaction With Food Delivery Mobile Apps. Sage Open, 10(4), 1–10. https://doi.org/10.1177/2158244020970563
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology : A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/https://doi.org/10.1287/mnsc.35.8.982
Davis, F. D., & Granić, A. (2024). The Technology Acceptance Model: 30 Years of TAM. In Technology (Vol. 1, Issue 1, pp. 1–150). https://link.springer.com/10.1007/978-3-030-45274-2
Fahrizal. (2023). Pengaruh Perceived Ease Of Use, Perceived Usefulness dan Satisfaction Terhadap Continuance Intention Pengguna Aplikasi Food Delivery Saat Pandemi. Jurnal Bisnis, Manajemen, Dan Keuangan, 4(2), 408–427.
Fernando, D. D., & Fahruddin. (2023). History Of The Industrial Revolution. Santhet: (Jurnal Sejarah, Pendidiikan Dan Humaniora), 7(1), 1–5. https://doi.org/10.36526/js.v3i2.e-ISSN
Fu, S., Yan, Q., & Feng, G. C. (2018). Who will attract you? Similarity effect among users on online purchase intention of movie tickets in the social shopping context. International Journal of Information Management, 40(January), 88–102. https://doi.org/10.1016/j.ijinfomgt.2018.01.013
Greener, S. (2022). Digging for acceptance theory. Interactive Learning Environments, 30(4), 587–588. https://doi.org/10.1080/10494820.2022.2062170
Hair, J. F., Hult, G. T. M., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) Third Edition (K. Offley (ed.); 3rd ed.). SAGE.
Hargittai, E., Piper, A. M., & Morris, M. R. (2019). From internet access to internet skills: digital inequality among older adults. Universal Access in the Information Society, 18(4), 881–890. https://doi.org/10.1007/s10209-018-0617-5
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management and Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Huang, S. L., & Siao, H. R. (2023). Factors Affecting the Implementation of Online Food Delivery and Its Impact on Restaurant Performance during the COVID-19 Pandemic. Sustainability (Switzerland), 15(16). https://doi.org/10.3390/su151612147
Kusumawardhani, S. (2022). Survei Persepsi & Perilaku Konsumsi Online Food Delivery (OFD) di Indonesia. Tenggara Strategics, 1–26.
Manaar, Setiawan, D., & Khaira, U. (2023). Analysis of Factors Influencing GoFood Service User Behavior During the Covid-19 Pandemic Using the UTAUT 2 Method Analisis Faktor yang Mempengaruhi Minat Perilaku Pengguna Layanan GoFood di Masa Pandemi Covid-19 Menggunakan Metode UTAUT 2. SENTIMAS: Seminar Nasional Penelitian Dan Pengabdian Masyarakat, 194–205.
Martinez-Ruiz, M. P., & Moser, K. S. (2019). Studying Consumer Behavior in an Online Context: The Impact of the Evolution of the World Wide Web for New Avenues in Research. Frontiers in Psychology, 10(December), 3–6. https://doi.org/10.3389/fpsyg.2019.02731
Moorman, C., Ryan, M., & Tavassoli, N. (2022). Why Marketers Are Returning to Traditional Advertising. Harvard Business Review. https://hbr.org/2022/04/why-marketers-are-returning-to-traditional-advertising
Mouakket, S. (2015). Computers in Human Behavior Factors influencing continuance intention to use social network sites : The Facebook case. COMPUTERS IN HUMAN BEHAVIOR, 53, 102–110. https://doi.org/10.1016/j.chb.2015.06.045
Mutia Annur, C. (2024). Indonesia Rajai Pasar Online Food Delivery di Asia Tenggara pada 2023. In Databoks.
Okumus, B., Ali, F., Bilgihan, A., & Ozturk, A. B. (2018). Psychological factors influencing customers’ acceptance of smartphone diet apps when ordering food at restaurants. International Journal of Hospitality Management, 72(December 2017), 67–77. https://doi.org/10.1016/j.ijhm.2018.01.001
Pertiwi, F., Masudin, I., Zulfikarijah, F., & Restuputri, D. P. (2022). Technology acceptance model of Tuberculosis Integrated Information System in Indonesian primary healthcare public health Technology acceptance model of Tuberculosis Integrated Information System in Indonesian primary healthcare. Cogent Public Health, 9(1). https://doi.org/10.1080/27707571.2022.2151929
Putra H., O. (2018). ANALISIS POSITIONING SARI BUAH APEL DENGAN METODE MDS (MULTIDIMENSIONAL SCALING) DI KOTA MALANG. 104.
Ray, A., Dhir, A., Kumar, P., & Kaur, P. (2019). Journal of Retailing and Consumer Services Why do people use food delivery apps ( FDA )? A uses and grati fi cation theory perspective. Journal of Retailing and Consumer Services, 51(May), 221–230. https://doi.org/10.1016/j.jretconser.2019.05.025
Rizti, F. (2024). 185,3 Juta Pengguna Internet Tercatat di Indonesia pada 2024. https://data.goodstats.id/statistic/1853-juta-pengguna-internet-tercatat-di-indonesia-pada-2024-JFNoa
Roh, M., & Park, K. (2019). Adoption of O2O food delivery services in South Korea: The moderating role of moral obligation in meal preparation. International Journal of Information Management, 47(September), 262–273. https://doi.org/10.1016/j.ijinfomgt.2018.09.017
Safira, M., & Chikaraishi, M. (2023). The impact of online food delivery service on eating-out behavior: a case of Multi-Service Transport Platforms (MSTPs) in Indonesia. Transportation, 50(6), 2253–2271. https://doi.org/10.1007/s11116-022-10307-7
Samsuryaningrum, I. P., & Rahayu, J. (2022). ANALISIS ADOPSI PENERIMAAN TEKNOLOGI INFORMASIOLEH USAHA MIKRO, KECIL, DAN MENENGAHDI KECAMATAN PANTI KABUPATEN JEMBER. Jurnal Bisnis Dan Manajemen, 16(1), 43–55. https://doi.org/10.19184/bisma.v16i1.18001
Sudaryati, E. (2017). The Influence of Perceived Usefulness, Perceived Ease of Use, Attitude, Subjectif Norm, and Perceived Behavioral Control to Actual Usage Psak 45 Revision on 2011 with Intention as Intervening Variable in Unair Financial Departement. Proceedings of the 2017 International Conference on Organizational Innovation (ICOI 2017), 131(Icoi), 86–92. https://doi.org/10.2991/icoi-17.2017.30
Tran, V. D. (2021). Using Mobile Food Delivery Applications during the COVID-19 Pandemic : Applying the Theory of Planned Behavior to Examine Continuance Behavior. Sustainability (Switzerland), 13(12066). https://doi.org/10.3390/su132112066
Troise, C., O’Driscoll, A., Tani, M., & Prisco, A. (2021). Online food delivery services and behavioural intention – a test of an integrated TAM and TPB framework. British Food Journal, 123(2), 664–683. https://doi.org/10.1108/BFJ-05-2020-0418
Wijaya, O. A., Andajani, E., & Rahayu, S. (2020). Menguji Determinan Individual Intention to Use pada Aplikasi Traveloka. Journal of Business and Banking, 10(1), 71. https://doi.org/10.14414/jbb.v10i1.2230
Yeo, S. F., Tan, C. L., Teo, S. L., & Tan, K. H. (2021). The role of food apps servitization on repurchase intention: A study of FoodPanda. International Journal of Production Economics, 234(August 2020), 108063. https://doi.org/10.1016/j.ijpe.2021.108063
Yudantara, I. G. A. P., & Yasa, I. N. P. (2020). Determinant Use of Behavior Online Shopping Information System. Proceedings of the 5th International Conference on Tourism, Economics, Accounting, Management and Social Science (TEAMS 2020), 158(Teams), 413–419. https://doi.org/10.2991/aebmr.k.201212.058
Zhou, H., Liu, J., & Cui, X. (2021). Research on Influencing Factors of Adoption Behavior of Mobile Readers Based on Meta-Analysis. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/5082594