Electrochemical Detection of Nitrite Using a Fe₃O₄/Nafion-Modified Gold Wire Electrode

Authors

  • Ruzain Rafie Sukma Putra Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Harmami Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Kartika A Madurani Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Heru Suryanto Department of Mechanical Engineering, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
  • Daimon Syukri Department of Food and Agricultural Product Technology, Andalas University, Limaum Manis, Padang, 25163, Indonesia
  • Masato Tominaga Department of Chemistry and Applied Chemistry, Saga University, Saga, 840-8502, Japan
  • Fredy Kurniawan Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

Keywords:

Electrochemical, Fe3O4 Nanoparticles, Gold Electrode, Nafion, Nitrite Ions

Abstract

This study presents the development and evaluation of an electrochemical sensor for nitrite detection based on magnetite nanoparticles (Fe₃O₄ NPs) and a Nafion-modified gold wire electrode. Fe₃O₄ NPs were synthesized through an electrolysis route and subsequently characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (FE-SEM/EDX). The XRD diffraction pattern is similar to the standard JCPDS card number 19-0629, confirming the structure of Fe₃O₄ NPs. Morphology analysis using FE-SEM revealed Fe₃O₄ NPs with an average size measured to be 123.4 nm. Cyclic voltammetry (CV) measurements demonstrated a high oxidation peak for nitrite detection using the proposed electrode at neutral pH (pH 7). CV analysis towards K3[Fe(CN)6] shows that the proposed electrode gave the highest current peak. The specific surface area of the proposed electrode was found to be 0.149 cm2. Quantitative analysis using CV showed a limit of detection (LOD) of 4.4 ppm. Using the amperometry techniques, the LOD produced was as low as 0.00105 ppm. These findings highlight the potential of the Fe₃O₄ and Nafion-modified gold electrode for sensitive nitrite analysis.

References

Alemayehu, D., Bitew, Z. & Yohannes, Y. B. (2023). Development of a new electrochemical sensor based on nafion/cobalt doped bismuth ferrite nanoparticle modified glassy carbon electrode for detection of hydrogen peroxide. Sensing and Bio-Sensing Research, 42, 100586. https://doi.org/10.1016/j.sbsr.2023.100586

Bhuvaneswari, C., Elangovan, A., Sudhan, N., Vinodhkumar, G., Saravanan, S., Balasubramanian, V., Sharmila, C. & Karuppaiah, S. (2023). A low-cost hybrid GQDs/Fe3O4/polypyrrole nanocomposite based chemo-sensor for electrochemical non-enzymatic selective determination of creatinine in biological samples. Microchemical Journal, 194(August), 109259. https://doi.org/10.1016/j.microc.2023.109259

Chen, Y., Li, S., Gao, R., Shi, Y., Sun, Y., Waterhouse, G. I. N. & Xu, Z. (2025). Design of an injectable magnetic hydrogel with porous structure and electrocatalytic activity for the sensitive electrochemical detection of nitrite in foods. Food Chemistry, 473(November 2024), 143030. https://doi.org/10.1016/j.foodchem.2025.143030

Chu, Y., Zhou, H., Wang, X., Zhang, H., Zhao, L., Xu, T., Yan, H. & Zhao, F. (2023). A flexible and self-supported nanoporous gold wire electrode with a seamless structure for electrochemical ascorbic acid sensor. Microchemical Journal, 186(November 2022), 108259. https://doi.org/10.1016/j.microc.2022.108259

Du, X., Zhang, Y., Liu, M., Tian, X. & Cao, Z. (2023). An environmentally friendly, layer-by-layer assembled electrode for ultrafast electrochemical detection of nitrite in water. Journal of Applied Electrochemistry, 53(12), 2443–2455. https://doi.org/10.1007/s10800-023-01922-y

El-Desoky, H. S., Beltagi, A. M., Ghoneim, M. M. & El-Hadad, A. I. (2022). The first utilization of graphene nano-sheets and synthesized Fe3O4 nanoparticles as a synergistic electrodeposition platform for simultaneous voltammetric determination of some toxic heavy metal ions in various real environmental water samples. Microchemical Journal, 175, 106966. https://doi.org/10.1016/j.microc.2021.106966

Faisal, M., Alam, M. M., Ahmed, J., Asiri, A. M., Algethami, J. S., Altholami, R. H., Harraz, F. A. & Rahman, M. M. (2024). Efficient nitrite determination by electrochemical approach in liquid phase with ultrasonically prepared gold-nanoparticle-conjugated conducting polymer nanocomposites. Frontiers in Chemistry, 12. https://doi.org/10.3389/fchem.2024.1358353

Farina, R., Scalese, S., Alberti, A., Privitera, S. M. S., Capuano, G. E., Corso, D., Screpis, G. A., Reina, S. C. R., Condorelli, G. G., Coniglio, M. A. & Libertino, S. (2025). Electrocatalytical Nitrite Oxidation via Manganese and Copper Oxides on Carbon Screen-Printed Electrode. Sensors, 25(12), 3764. https://doi.org/10.3390/s25123764

Hasan, M. R., Islam, T., Hasan, M. M., Chowdhury, A. N., Ahammad, A. J. S., Reaz, A. H., Roy, C. K., Shah, S. S., Al-Imran & Aziz, M. A. (2022). Evaluating the electrochemical detection of nitrite using a platinum nanoparticle coated jute carbon modified glassy carbon electrode and voltametric analysis. Journal of Physics and Chemistry of Solids, 165(June 2021), 110659. https://doi.org/10.1016/j.jpcs.2022.110659

Hutapea, T. P. H., Suprapto, Syaputra, M. Y. & Kurniawan, F. (2025). Green chemistry approach to formaldehyde detection using fish albumin-modified gold electrodes. Global Journal of Environmental Science and Management, 11(2), 791–804. https://doi.org/10.22034/gjesm.2025.02.23

Jian, J. M., Fu, L., Ji, J., Lin, L., Guo, X. & Ren, T. L. (2018). Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sensors and Actuators, B: Chemical, 262, 125–136. https://doi.org/10.1016/j.snb.2018.01.164

Rabbani, G., Ehtisham Khan, M., Zakri, W., Vahid Khan, M. & Bashiri, A. H. (2024). An electrochemical immunosensor based on AgNPs/Nafion-GCE for detection of salivary lactoferrin: Alzheimer’s disease biomarker. Microchemical Journal, 207(November). https://doi.org/10.1016/j.microc.2024.112079

Riahifar, V., Haghnazari, N., Keshavarzi, F. & Nasri, F. (2021). Design a high sensitive electrochemical sensor based on immobilized cysteine on Fe3O4@Au core-shell nanoparticles and reduced graphene oxide nanocomposite for nitrite monitoring. Microchemical Journal, 166(October 2020), 106217. https://doi.org/10.1016/j.microc.2021.106217

Salagare, S., Shivappa Adarakatti, P. & Venkataramanappa, Y. (2022). Designing and construction of carboxyl functionalised MWCNTs/Co-MOFs-based electrochemical sensor for the sensitive detection of nitrite. International Journal of Environmental Analytical Chemistry, 102(17), 5301–5320. https://doi.org/10.1080/03067319.2020.1796989

Sari, N. P., Mulyawati, M., Syahputra, M. Y., Madurani, K. A. & Kurniawan, F. (2024). A Novel ultrasensitive nitrite ion detection using tungsten trioxide-modified gold electrode. Electrochimica Acta, 497(January), 144590. https://doi.org/10.1016/j.electacta.2024.144590

Shalali, F., Cheraghi, S. & Taher, M. A. (2022). A sensitive electrochemical sensor amplified with ionic liquid and N-CQD/Fe3O4 nanoparticles for detection of raloxifene in the presence of tamoxifen as two essentials anticancer drugs. Materials Chemistry and Physics, 278(December 2021), 125658. https://doi.org/10.1016/j.matchemphys.2021.125658

Wang, W., Cai, Q., Dai, C., Li, J., Xu, H., Zhang, W., Chen, Y. & Hu, J. (2025). Construction of an electrochemical sensor based on a conductive Ni3(HHTP)2 nanowires array functionalized with ag nanoparticles@WS2QDs for nitrite detection. Food Chemistry, 473(January), 143126. https://doi.org/10.1016/j.foodchem.2025.143126

Wang, Y., Qiu, T., Wang, J., Feng, J., Zhao, S., Chen, H., Gong, L., Wang, Z., Zhang, Y., Yin, S., Zhu, Y., Deng, J., Chen, S., Tao, M. & Li, L. (2025). Hydrothermal synthesis of iron foam-supported Co3O4-based sensor electrodes for electrochemical detection of nitrite. Materials Today Communications, 43(January). https://doi.org/10.1016/j.mtcomm.2025.111656

Yi, Z., Zhang, Y., Gao, X., Li, S., Li, K., Xiong, C., Huang, G. & Zhang, J. (2024). Sensitive electrochemical immunosensor for rapid detection of Salmonella in milk using polydopamine/CoFe-MOFs@Nafion modified gold electrode. International Journal of Food Microbiology, 425(April), 110870. https://doi.org/10.1016/j.ijfoodmicro.2024.110870

Yu, J., Wang, B., Lu, Q., Xiao, L., Ma, X., Feng, Y. & Qian, Y. (2022). Fabrication of Fe3O4 nanoparticles by using cathode glow discharge electrolysis plasma and its electrochemical properties. Electrochimica Acta, 427(May), 140843. https://doi.org/10.1016/j.electacta.2022.140843

Zhang, M., Yang, Y. & Guo, W. (2024). Electrochemical sensor for sensitive nitrite and sulfite detection in milk based on acid-treated Fe3O4@SiO2 nanoparticles. Food Chemistry, 430(February 2023), 137004. https://doi.org/10.1016/j.foodchem.2023.137004

Downloads

Published

2025-11-15

How to Cite

Ruzain Rafie Sukma Putra, Harmami, Kartika A Madurani, Heru Suryanto, Daimon Syukri, Masato Tominaga, & Fredy Kurniawan. (2025). Electrochemical Detection of Nitrite Using a Fe₃O₄/Nafion-Modified Gold Wire Electrode. Proceeding of International Joint Conference on UNESA, 3(1). Retrieved from https://proceeding.unesa.ac.id/index.php/pijcu/article/view/7113

Issue

Section

Articles