Enhancing Human Resource Management in Healthcare: Integrating AI for Improved Work Efficiency and Reduced Burnout
Keywords:
Artificial intelligence, Burnout, Healthcare, Human Resource Management, Work efficiencyAbstract
Burnout among healthcare professionals continues to be a critical issue worldwide, affecting their psychological well-being, job satisfaction, and care quality. The integration of artificial intelligence (AI) in healthcare has emerged as a strategic solution to enhance human resource management (HRM) by improving work efficiency and reducing burnout. This systematic review searched recent literature from PubMed, ScienceDirect and Google Scholar including AI-related studies that measured burnout reduction or work efficiency among healthcare workers. The result showed the large language model was the most frequently applied approach across 13 countries. Burnout reduction via AI is most effective when systems are integrated with behavior-sensitive feedback or designed to offload documentation. AI's impact on work efficiency is well-supported such as time reduction and improved scheduling. Efficiency-focused AI interventions tend to yield faster observable benefits. Key challenges including system integration, clinician trust, interpretability of AI decisions, and ethical concerns. These findings offer valuable guidance of practical AI in healthcare that can support sustainable HRM practices by improving time efficiency, promoting workforce well-being, and maintaining care quality.
References
Albrecht, M., Shanks, D., Shah, T., Hudson, T., Thompson, J., Filardi, T.,
Wright, K., Ator, G. A., & Smith, T. R. (2024). Enhancing clinical
documentation with ambient artificial intelligence: A quality
improvement survey assessing clinician perspectives on work burden,
burnout, and job satisfaction. JAMIA Open, 8(1), ooaf013.
https://doi.org/10.1093/jamiaopen/ooaf013
Allen, M. R., Webb, S., Mandvi, A., Frieden, M., Tai-Seale, M., & Kallenberg, G. (2024). Navigating the doctor-patient-AI relationship—A mixed-
methods study of physician attitudes toward artificial intelligence in primary care. BMC Primary Care, 25(1), 42.
https://doi.org/10.1186/s12875-024-02282-y
Athamneh, S. (2024). Human resource management practices and their impact
on healthcare workers’ job satisfaction and burnout in the Jordanian
public sector. Problems and Perspectives in Management, 22(1), 634–
648. https://doi.org/10.21511/ppm.22(1).2024.50
Awasthi, R., Mbbs, S. P. R., MTech, S. M., BTech, D. M., Mbbs, H. A., Atreja,
A., Bhattacharyya, A., Bhattad, A., Singh, N., Cywinski, J. B.,
Maheshwari, K., Dave, C., Mbbs, A. K., Papay, F. A., & Mathur, P.
(n.d.). Artificial Intelligence in Healthcare: 2024 Year in Review.
Baek, G., & Cha, C. (2025). AI ‐Assisted Tailored Intervention for Nurse
Burnout: A Three‐Group Randomized Controlled Trial. Worldviews on
Evidence-Based Nursing, 22(1), e70003.
https://doi.org/10.1111/wvn.70003 Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial intelligence in
healthcare: Transforming the practice of medicine. Future Healthcare
Journal, 8(2), e188–e194. https://doi.org/10.7861/fhj.2021-0095
Barak-Corren, Y., Wolf, R., Rozenblum, R., Creedon, J. K., Lipsett, S. C.,
Lyons, T. W., Michelson, K. A., Miller, K. A., Shapiro, D. J., Reis, B.
Y., & Fine, A. M. (2024). Harnessing the Power of Generative AI for
Clinical Summaries: Perspectives From Emergency Physicians. Annals
of Emergency Medicine, 84(2), 128–138.
https://doi.org/10.1016/j.annemergmed.2024.01.039
Bharadwaj, P., Nicola, L., Breau-Brunel, M., Sensini, F., Tanova-Yotova, N.,
Atanasov, P., Lobig, F., & Blankenburg, M. (2024). Unlocking the
Value: Quantifying the Return on Investment of Hospital Artificial
Intelligence. Journal of the American College of Radiology, 21(10),
1677–1685. https://doi.org/10.1016/j.jacr.2024.02.034
Bodenheimer, T., & Sinsky, C. (2014). From Triple to Quadruple Aim: Care
of the Patient Requires Care of the Provider. The Annals of Family
Medicine, 12(6), 573–576. https://doi.org/10.1370/afm.1713
Bundy, H., Gerhart, J., Baek, S., Connor, C. D., Isreal, M., Dharod, A.,
Stephens, C., Liu, T.-L., Hetherington, T., & Cleveland, J. (2024). Can
the Administrative Loads of Physicians be Alleviated by AI-Facilitated
Clinical Documentation? Journal of General Internal Medicine, 39(15),
2995–3000. https://doi.org/10.1007/s11606-024-08870-z
Calhoun, M., Lightfoot, E., Okamoto, K., Goodenough, K., & Zheng, M.
(2020). Contemporary perceptions of social work: Macro practice in the
profession. Journal of Community Practice, 28(4), 374–391.
https://doi.org/10.1080/10705422.2020.1841702
Cavanagh, J., Pariona‐Cabrera, P., & Halvorsen, B. (2023). In what ways are
HR analytics and artificial intelligence transforming the healthcare
sector? Asia Pacific Journal of Human Resources, 61(4), 785–793.
https://doi.org/10.1111/1744-7941.12392
Çelik, Y., & Kılıç, İ. (2019). Hemşirelerde İş Doyumu, Mesleki Tükenmişlik
Ve Yaşam Kalitesi Arasindaki İlişkiler. Kocatepe Tıp Dergisi, 20(4),
230–238. https://doi.org/10.18229/kocatepetip.444706
Champendal, M., Ribeiro, R. S. T., Müller, H., Prior, J. O., & Dos Reis, C. S.
(2024). Nuclear medicine technologists practice impacted by AI
denoising applications in PET/CT images. Radiography, 30(4), 1232-
1239.
Champendal, M., Ribeiro, R. S. T., Müller, H., Prior, J. O., & Sá Dos Reis, C.
(2024). Nuclear medicine technologists practice impacted by AI
denoising applications in PET/CT images. Radiography, 30(4), 1232–
1239. https://doi.org/10.1016/j.radi.2024.06.010
Cho, A., Cha, C., & Baek, G. (2024). Development of an Artificial
Intelligence–Based Tailored Mobile Intervention for Nurse Burnout:
Single-Arm Trial. Journal of Medical Internet Research, 26, e54029.
Chowhan, J., Pries, F., & Mann, S. (2017). Persistent innovation and the role
of human resource management practices, work organization, and
strategy. Journal of Management & Organization, 23(3), 456–471.
https://doi.org/10.1017/jmo.2016.8Dang, T. H., Nguyen, T. A., Hoang Van, M., Santin, O., Tran, O. M. T., &
Schofield, P. (2021). Patient-centered care: transforming the health care
system in Vietnam with support of digital health technology. Journal of
Medical Internet Research, 23(6), e24601.
Davenport, T., & Kalakota, R. (n.d.). Digital Technology The potential for
artificial intelligence in healthcare.
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T.,
Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan,
P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B.,
Lal, B., Lucini, B., ... Williams, M. D. (2021). Artificial Intelligence
(AI): Multidisciplinary perspectives on emerging challenges,
opportunities, and agenda for research, practice and policy.
International Journal of Information Management, 57, 101994.
https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Guo, Y. F., Wang, S. J., Plummer, V., Du, Y., Song, T. P., & Wang, N. (2024).
Effects of Job Crafting and Leisure Crafting on Nurses’ Burnout: A
Machine Learning‐Based Prediction Analysis. Journal of Nursing
Management, 2024(1), 9428519.
Gupta, M. D., Jha, M. K., Bansal, A., Yadav, R., Ramakrishanan, S., Girish,
M. P., ... & BRUCEE Li Investigators. (2021). COVID 19-related
burnout among healthcare workers in India and ECG based predictive
machine learning model: Insights from the BRUCEE-Li study. Indian
heart journal, 73(6), 674-681.
Ganeshan, D., Wei, W., & Yang, W. (2019). Burnout in Chairs of Academic
Radiology Departments in the United States. Academic Radiology,
26(10), 1378–1384. https://doi.org/10.1016/j.acra.2018.12.006
Guo, Y.-F., Wang, S.-J., Plummer, V., Du, Y., Song, T.-P., & Wang, N. (2024).
Effects of Job Crafting and Leisure Crafting on Nurses’ Burnout: A
Machine Learning‐Based Prediction Analysis. Journal of Nursing
Management, 2024(1), 9428519.
https://doi.org/10.1155/2024/9428519
Gupta, M. D., Jha, M. K., Bansal, A., Yadav, R., Ramakrishanan, S., Girish,
M. P., Sarkar, P. G., Qamar, A., Kumar, S., Kumar, S., Jain, A.,
Saijpaul, R., Gupta, V., Kansal, D., Garg, S., Arora, S., Biswas, P. S.,
Yusuf, J., Malhotra, R. K., ... Gupta, A. (2021). COVID 19-related
burnout among healthcare workers in India and ECG based predictive
machine learning model: Insights from the BRUCEE- Li study. Indian
Heart Journal, 73(6), 674–681.
https://doi.org/10.1016/j.ihj.2021.10.002
Gustafson, K. A., Rowe, C., Gavaza, P., Bernknopf, A., Nogid, A., Hoffman,
A., Jones, E., Showman, L., Miller, V., Abdel Aziz, M. H., Brand-
Eubanks, D., Do, D. P., Berman, S., Chu, A., Dave, V., Devraj, R.,
Hintze, T. D., Munir, F., Mohamed, I., ... Southwood, R. (2025).
Pharmacists’ perceptions of artificial intelligence: A national survey.
Journal of the American Pharmacists Association, 65(1), 102306.
https://doi.org/10.1016/j.japh.2024.102306
Huo, W., Li, Q., Liang, B., Wang, Y., & Li, X. (2025). When Healthcare
Professionals Use AI: Exploring Work Well-Being Through Psychological Needs Satisfaction and Job Complexity. Behavioral
Sciences, 15(1), 88. https://doi.org/10.3390/bs15010088
Kloutsiniotis, P. V., Mihail, D. M., Mylonas, N., & Pateli, A. (2022).
Transformational Leadership, HRM practices and burnout during the
COVID-19 pandemic: The role of personal stress, anxiety, and
workplace loneliness. International Journal of Hospitality
Management, 102, 103177.
https://doi.org/10.1016/j.ijhm.2022.103177
Konlan, K. D., Asampong, E., Dako-Gyeke, P., & Glozah, F. N. (2022).
Burnout syndrome among healthcare workers during COVID-19
Pandemic in Accra, Ghana. PLOS ONE, 17(6), e0268404.
https://doi.org/10.1371/journal.pone.0268404
Kumaş, G., Öner Yalçin, S., & Öztunç, G. (2019). Onkoloji Hemşirelerinin
Tükenmişlik ve İş Doyumu Düzeyleri: Adana Örneği. Mersin
Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp
Dergisi, 9(2), 256–265. https://doi.org/10.31020/mutftd.550272
Laing, S., & Mercer, J. (2021). Improved preventive care clinical decision-
making efficiency: Leveraging a point-of-care clinical decision support
system. BMC Medical Informatics and Decision Making, 21(1), 315.
https://doi.org/10.1186/s12911-021-01675-8
Langlotz, C. P. (2019). Will Artificial Intelligence Replace Radiologists?
Radiology: Artificial Intelligence, 1(3), e190058.
https://doi.org/10.1148/ryai.2019190058
Laplante, S., Namazi, B., Kiani, P., Hashimoto, D. A., Alseidi, A., Pasten, M.,
Brunt, L. M., Gill, S., Davis, B., Bloom, M., Pernar, L., Okrainec, A.,
& Madani, A. (2023). Validation of an artificial intelligence platform
for the guidance of safe laparoscopic cholecystectomy. Surgical
Endoscopy, 37(3), 2260–2268. https://doi.org/10.1007/s00464-022-
09439-9
Li, L. (2023). Role of chatbots on gastroenterology: Let’s chat about the future.
Gastroenterology & Endoscopy, 1(3), 144–149.
https://doi.org/10.1016/j.gande.2023.06.002
Li, W., Tang, L. M., Montayre, J., Harris, C. B., West, S., & Antoniou, M.
(2024). Investigating Health and Well-Being Challenges Faced by an
Aging Workforce in the Construction and Nursing Industries:
Computational Linguistic Analysis of Twitter Data. Journal of Medical
Internet Research, 26, e49450. https://doi.org/10.2196/49450
Liao, C.-T., Tsay, S.-F., & Chen, H.-C. (2024). Exploring generative AI’s role
in alleviating nursing workload and burnout in Taiwan. Journal of the
Formosan Medical Association, 123(7), 736–737.
https://doi.org/10.1016/j.jfma.2024.02.003
Liu, H., Ding, N., Li, X., Chen, Y., Sun, H., Huang, Y., Liu, C., Ye, P., Jin, Z.,
Bao, H., & Xue, H. (2024). Artificial Intelligence and Radiologist
Burnout. JAMA Network Open, 7(11), e2448714.
https://doi.org/10.1001/jamanetworkopen.2024.48714
Mansor, M. F., Abu, N. H., Abashah, A. N., & Mohd Kassim, M. A. (2018).
Cost Reduction and Business Strategy Matters to Human Resource
Outsourcing? A Validation by HR Experts from Government Link Companies (GLC’s). MATEC Web of Conferences, 150, 05033.
https://doi.org/10.1051/matecconf/201815005033
Marković, S., Kostić, O., Terzić-Supic, Z., Tomic Mihajlovic, S., Milovanović,
J., Radovanovic, S., Zdravković, N., Stojić, V., Jovčić, L., Jocić-Pivač,
B., Tomić Lučić, A., Kostić, M., & Šorak, M. (2024). Exposure to
Stress and Burnout Syndrome in Healthcare Workers, Expert Workers,
Professional Associates, and Associates in Social Service Institutions.
Medicina, 60(3), 499. https://doi.org/10.3390/medicina60030499
Mascagni, P., Vardazaryan, A., Alapatt, D., Urade, T., Emre, T., Fiorillo, C.,
Pessaux, P., Mutter, D., Marescaux, J., Costamagna, G., Dallemagne,
B., & Padoy, N. (2022). Artificial Intelligence for Surgical Safety:
Automatic Assessment of the Critical View of Safety in Laparoscopic
Cholecystectomy Using Deep Learning. Annals of Surgery, 275(5),
955–961. https://doi.org/10.1097/SLA.0000000000004351
Mbunge, E., Muchemwa, B., Jiyane, S., & Batani, J. (2021). Sensors and
healthcare 5.0: Transformative shift in virtual care through emerging
digital health technologies. Global Health Journal, 5(4), 169–177.
https://doi.org/10.1016/j.glohj.2021.11.008
Meshram, R. (2023). The Role of Artificial Intelligence (AI) in Recruitment
and Selection of Employees in the Organisation. Russian Law Journal,
11(9s). https://doi.org/10.52783/rlj.v11i9s.1624
Miao, J., Thongprayoon, C., & Cheungpasitporn, W. (2024). Should Artificial
Intelligence Be Used for Physician Documentation to Reduce Burnout?
Kidney360, 5(5), 765–767.
https://doi.org/10.34067/KID.0000000000000430
Moryousef, J., Nadesan, P., Uy, M., Matti, D., & Guo, Y. (2025). Assessing
the efficacy and clinical utility of artificial intelligence scribes in
urology. Urology, 196, 12-17.
Nan, J., Herbert, M. S., Purpura, S., Henneken, A. N., Ramanathan, D., &
Mishra, J. (2024). Personalized Machine Learning-Based Prediction of
Wellbeing and Empathy in Healthcare Professionals. Sensors, 24(8),
2640. https://doi.org/10.3390/s24082640
Nawaz, N., Arunachalam, H., Pathi, B. K., & Gajenderan, V. (2024). The
adoption of artificial intelligence in human resources management
practices. International Journal of Information Management Data
Insights, 4(1), 100208. https://doi.org/10.1016/j.jjimei.2023.100208
Nguyen, O. K., Makam, A. N., Clark, C., Zhang, S., Xie, B., Velasco, F.,
Amarasingham, R., & Halm, E. A. (2016). Predicting all‐cause
readmissions using electronic health record data from the entire
hospitalization: Model development and comparison. Journal of
Hospital Medicine, 11(7), 473–480. https://doi.org/10.1002/jhm.2568
Noble, J. M., Zamani, A., Gharaat, M., Merrick, D., Maeda, N., Lambe Foster,
A., Nikolaidis, I., Goud, R., Stroulia, E., Agyapong, V. I. O.,
Greenshaw, A. J., Lambert, S., Gallson, D., Porter, K., Turner, D., &
Zaiane, O. (2022). Developing, Implementing, and Evaluating an
Artificial Intelligence–Guided Mental Health Resource Navigation
Chatbot for Health Care Workers and Their Families During and
Following the COVID-19 Pandemic: Protocol for a Cross-sectional Study. JMIR Research Protocols, 11(7), e33717.
Omranian, S., He, L., Talsma, A., Scoglio, A. A. J., McRoy, S., & Rich-
Edwards, J. W. (2025). Using Large Language Models to Assess
Burnout Among Health Care Workers in the Context of COVID-19
Vaccine Decisions and Health Beliefs: Retrospective Cohort Study.
JMIR Nursing, 8, e73672–e73672. https://doi.org/10.2196/73672
Owens, L. M., Wilda, J. J., Hahn, P. Y., Koehler, T., & Fletcher, J. J. (2024).
The association between use of ambient voice technology
documentation during primary care patient encounters, documentation
burden, and provider burnout. Family Practice, 41(2), 86–91.
https://doi.org/10.1093/fampra/cmad092
Pavuluri, S., Sangal, R., Sather, J., & Taylor, R. A. (2024). Balancing act: The
complex role of artificial intelligence in addressing burnout and
healthcare workforce dynamics. BMJ Health & Care Informatics,
31(1), e101120. https://doi.org/10.1136/bmjhci-2024-101120
Petry, M., Lansky, C., Chodakiewitz, Y., Maya, M., & Pressman, B. (2022).
Decreased Hospital Length of Stay for ICH and PE after Adoption of
an Artificial Intelligence-Augmented Radiological Worklist Triage
System. Radiology Research and Practice, 2022, 1–7.
https://doi.org/10.1155/2022/2141839
Raisa, J. F., Rahman, Md. S., Mahmud, I., Kaiser, M. S., & Han, D. S. (2025).
Transition toward Healthcare 5.0: Impact of COVID-19 in the
healthcare industry. ICT Express, 11(3), 371–389.
https://doi.org/10.1016/j.icte.2025.04.002
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Liu, P. J., Liu, X.,
Sun, M., Sundberg, P., Yee, H., Zhang, K., Duggan, G. E., Flores, G.,
Hardt, M., Irvine, J., Le, Q., Litsch, K., Marcus, J., Mossin, A., ... Dean,
J. (2018). Scalable and accurate deep learning for electronic health
records. Npj Digital Medicine, 1(1), 18.
https://doi.org/10.1038/s41746-018-0029-1
Renggli, F. J., Gerlach, M., Bieri, J. S., Golz, C., & Sariyar, M. (2025).
Integrating Nurse Preferences Into AI-Based Scheduling Systems:
Qualitative Study. JMIR Formative Research, 9, e67747–e67747.
Sarker, I. H. (2022). AI-Based Modeling: Techniques, Applications and
Research Issues Towards Automation, Intelligent and Smart Systems.
SN Computer Science, 3(2), 158. https://doi.org/10.1007/s42979-022-
01043-x
Sarraf, B., & Ghasempour, A. (2025). Impact of artificial intelligence on
electronic health record-related burnouts among healthcare
professionals: Systematic review. Frontiers in Public Health, 13,
1628831. https://doi.org/10.3389/fpubh.2025.1628831
Shah, S. J., Devon-Sand, A., Ma, S. P., Jeong, Y., Crowell, T., Smith, M.,
Liang, A. S., Delahaie, C., Hsia, C., Shanafelt, T., Pfeffer, M. A., Sharp,
C., Lin, S., & Garcia, P. (2025). Ambient artificial intelligence scribes:
Physician burnout and perspectives on usability and documentationburden. Journal of the American Medical Informatics Association,
32(2), 375–380. https://doi.org/10.1093/jamia/ocae295
Vafaeezadeh, M., Behnam, H., Hosseinsabet, A., & Gifani, P. (2021). A deep
learning approach for the automatic recognition of prosthetic mitral
valve in echocardiographic images. Computers in Biology and
Medicine, 133, 104388.
Van Leeuwen, K. G., Meijer, F. J. A., Schalekamp, S., Rutten, M. J. C. M.,
Van Dijk, E. J., Van Ginneken, B., Govers, T. M., & De Rooij, M.
(2021). Cost-effectiveness of artificial intelligence aided vessel
occlusion detection in acute stroke: An early health technology
assessment. Insights into Imaging, 12(1), 133.
https://doi.org/10.1186/s13244-021-01077-4
Van Zyl-Cillié, M. M., Bührmann, J. H., Blignaut, A. J., Demirtas, D., &
Coetzee, S. K. (2024). A machine learning model to predict the risk
factors causing feelings of burnout and emotional exhaustion amongst
nursing staff in South Africa. BMC Health Services Research, 24(1),
1665. https://doi.org/10.1186/s12913-024-12184-5
Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X., Doshi-Velez, F.,
Jung, K., Heller, K., Kale, D., Saeed, M., Ossorio, P. N., Thadaney-
Israni, S., & Goldenberg, A. (2019). Do no harm: A roadmap for
responsible machine learning for health care. Nature Medicine, 25(9),
1337–1340. https://doi.org/10.1038/s41591-019-0548-6
Xie, Y., Zhai, Y., & Lu, G. (2025). Evolution of artificial intelligence in
healthcare: A 30-year bibliometric study. Frontiers in Medicine, 11,
1505692. https://doi.org/10.3389/fmed.2024.1505692
Ziegelmayer, S., Graf, M., Makowski, M., Gawlitza, J., & Gassert, F. (2022).
Cost-Effectiveness of Artificial Intelligence Support in Computed
Tomography-Based Lung Cancer Screening. Cancers, 14(7), 1729.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fayola Issalillah, Rafadi Khan Khayru, Didit Darmawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
