Enhancing Human Resource Management in Healthcare: Integrating AI for Improved Work Efficiency and Reduced Burnout

Authors

  • Fayola Issalillah Department of Islamic Family Law, Universitas Sunan Giri Surabaya
  • Rafadi Khan Khayru Department of Sharia Economic, Universitas Sunan Giri Surabaya
  • Didit Darmawan Department of Management, Universitas Sunan Giri Surabaya

Keywords:

Artificial intelligence, Burnout, Healthcare, Human Resource Management, Work efficiency

Abstract

Burnout among healthcare professionals continues to be a critical issue worldwide, affecting their psychological well-being, job satisfaction, and care quality. The integration of artificial intelligence (AI) in healthcare has emerged as a strategic solution to enhance human resource management (HRM) by improving work efficiency and reducing burnout. This systematic review searched recent literature from PubMed, ScienceDirect and Google Scholar including AI-related studies that measured burnout reduction or work efficiency among healthcare workers. The result showed the large language model was the most frequently applied approach across 13 countries. Burnout reduction via AI is most effective when systems are integrated with behavior-sensitive feedback or designed to offload documentation. AI's impact on work efficiency is well-supported such as time reduction and improved scheduling. Efficiency-focused AI interventions tend to yield faster observable benefits. Key challenges including system integration, clinician trust, interpretability of AI decisions, and ethical concerns. These findings offer valuable guidance of practical AI in healthcare that can support sustainable HRM practices by improving time efficiency, promoting workforce well-being, and maintaining care quality.

References

Albrecht, M., Shanks, D., Shah, T., Hudson, T., Thompson, J., Filardi, T.,

Wright, K., Ator, G. A., & Smith, T. R. (2024). Enhancing clinical

documentation with ambient artificial intelligence: A quality

improvement survey assessing clinician perspectives on work burden,

burnout, and job satisfaction. JAMIA Open, 8(1), ooaf013.

https://doi.org/10.1093/jamiaopen/ooaf013

Allen, M. R., Webb, S., Mandvi, A., Frieden, M., Tai-Seale, M., & Kallenberg, G. (2024). Navigating the doctor-patient-AI relationship—A mixed-

methods study of physician attitudes toward artificial intelligence in primary care. BMC Primary Care, 25(1), 42.

https://doi.org/10.1186/s12875-024-02282-y

Athamneh, S. (2024). Human resource management practices and their impact

on healthcare workers’ job satisfaction and burnout in the Jordanian

public sector. Problems and Perspectives in Management, 22(1), 634–

648. https://doi.org/10.21511/ppm.22(1).2024.50

Awasthi, R., Mbbs, S. P. R., MTech, S. M., BTech, D. M., Mbbs, H. A., Atreja,

A., Bhattacharyya, A., Bhattad, A., Singh, N., Cywinski, J. B.,

Maheshwari, K., Dave, C., Mbbs, A. K., Papay, F. A., & Mathur, P.

(n.d.). Artificial Intelligence in Healthcare: 2024 Year in Review.

Baek, G., & Cha, C. (2025). AI ‐Assisted Tailored Intervention for Nurse

Burnout: A Three‐Group Randomized Controlled Trial. Worldviews on

Evidence-Based Nursing, 22(1), e70003.

https://doi.org/10.1111/wvn.70003 Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial intelligence in

healthcare: Transforming the practice of medicine. Future Healthcare

Journal, 8(2), e188–e194. https://doi.org/10.7861/fhj.2021-0095

Barak-Corren, Y., Wolf, R., Rozenblum, R., Creedon, J. K., Lipsett, S. C.,

Lyons, T. W., Michelson, K. A., Miller, K. A., Shapiro, D. J., Reis, B.

Y., & Fine, A. M. (2024). Harnessing the Power of Generative AI for

Clinical Summaries: Perspectives From Emergency Physicians. Annals

of Emergency Medicine, 84(2), 128–138.

https://doi.org/10.1016/j.annemergmed.2024.01.039

Bharadwaj, P., Nicola, L., Breau-Brunel, M., Sensini, F., Tanova-Yotova, N.,

Atanasov, P., Lobig, F., & Blankenburg, M. (2024). Unlocking the

Value: Quantifying the Return on Investment of Hospital Artificial

Intelligence. Journal of the American College of Radiology, 21(10),

1677–1685. https://doi.org/10.1016/j.jacr.2024.02.034

Bodenheimer, T., & Sinsky, C. (2014). From Triple to Quadruple Aim: Care

of the Patient Requires Care of the Provider. The Annals of Family

Medicine, 12(6), 573–576. https://doi.org/10.1370/afm.1713

Bundy, H., Gerhart, J., Baek, S., Connor, C. D., Isreal, M., Dharod, A.,

Stephens, C., Liu, T.-L., Hetherington, T., & Cleveland, J. (2024). Can

the Administrative Loads of Physicians be Alleviated by AI-Facilitated

Clinical Documentation? Journal of General Internal Medicine, 39(15),

2995–3000. https://doi.org/10.1007/s11606-024-08870-z

Calhoun, M., Lightfoot, E., Okamoto, K., Goodenough, K., & Zheng, M.

(2020). Contemporary perceptions of social work: Macro practice in the

profession. Journal of Community Practice, 28(4), 374–391.

https://doi.org/10.1080/10705422.2020.1841702

Cavanagh, J., Pariona‐Cabrera, P., & Halvorsen, B. (2023). In what ways are

HR analytics and artificial intelligence transforming the healthcare

sector? Asia Pacific Journal of Human Resources, 61(4), 785–793.

https://doi.org/10.1111/1744-7941.12392

Çelik, Y., & Kılıç, İ. (2019). Hemşirelerde İş Doyumu, Mesleki Tükenmişlik

Ve Yaşam Kalitesi Arasindaki İlişkiler. Kocatepe Tıp Dergisi, 20(4),

230–238. https://doi.org/10.18229/kocatepetip.444706

Champendal, M., Ribeiro, R. S. T., Müller, H., Prior, J. O., & Dos Reis, C. S.

(2024). Nuclear medicine technologists practice impacted by AI

denoising applications in PET/CT images. Radiography, 30(4), 1232-

1239.

Champendal, M., Ribeiro, R. S. T., Müller, H., Prior, J. O., & Sá Dos Reis, C.

(2024). Nuclear medicine technologists practice impacted by AI

denoising applications in PET/CT images. Radiography, 30(4), 1232–

1239. https://doi.org/10.1016/j.radi.2024.06.010

Cho, A., Cha, C., & Baek, G. (2024). Development of an Artificial

Intelligence–Based Tailored Mobile Intervention for Nurse Burnout:

Single-Arm Trial. Journal of Medical Internet Research, 26, e54029.

Chowhan, J., Pries, F., & Mann, S. (2017). Persistent innovation and the role

of human resource management practices, work organization, and

strategy. Journal of Management & Organization, 23(3), 456–471.

https://doi.org/10.1017/jmo.2016.8Dang, T. H., Nguyen, T. A., Hoang Van, M., Santin, O., Tran, O. M. T., &

Schofield, P. (2021). Patient-centered care: transforming the health care

system in Vietnam with support of digital health technology. Journal of

Medical Internet Research, 23(6), e24601.

Davenport, T., & Kalakota, R. (n.d.). Digital Technology The potential for

artificial intelligence in healthcare.

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T.,

Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan,

P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B.,

Lal, B., Lucini, B., ... Williams, M. D. (2021). Artificial Intelligence

(AI): Multidisciplinary perspectives on emerging challenges,

opportunities, and agenda for research, practice and policy.

International Journal of Information Management, 57, 101994.

https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Guo, Y. F., Wang, S. J., Plummer, V., Du, Y., Song, T. P., & Wang, N. (2024).

Effects of Job Crafting and Leisure Crafting on Nurses’ Burnout: A

Machine Learning‐Based Prediction Analysis. Journal of Nursing

Management, 2024(1), 9428519.

Gupta, M. D., Jha, M. K., Bansal, A., Yadav, R., Ramakrishanan, S., Girish,

M. P., ... & BRUCEE Li Investigators. (2021). COVID 19-related

burnout among healthcare workers in India and ECG based predictive

machine learning model: Insights from the BRUCEE-Li study. Indian

heart journal, 73(6), 674-681.

Ganeshan, D., Wei, W., & Yang, W. (2019). Burnout in Chairs of Academic

Radiology Departments in the United States. Academic Radiology,

26(10), 1378–1384. https://doi.org/10.1016/j.acra.2018.12.006

Guo, Y.-F., Wang, S.-J., Plummer, V., Du, Y., Song, T.-P., & Wang, N. (2024).

Effects of Job Crafting and Leisure Crafting on Nurses’ Burnout: A

Machine Learning‐Based Prediction Analysis. Journal of Nursing

Management, 2024(1), 9428519.

https://doi.org/10.1155/2024/9428519

Gupta, M. D., Jha, M. K., Bansal, A., Yadav, R., Ramakrishanan, S., Girish,

M. P., Sarkar, P. G., Qamar, A., Kumar, S., Kumar, S., Jain, A.,

Saijpaul, R., Gupta, V., Kansal, D., Garg, S., Arora, S., Biswas, P. S.,

Yusuf, J., Malhotra, R. K., ... Gupta, A. (2021). COVID 19-related

burnout among healthcare workers in India and ECG based predictive

machine learning model: Insights from the BRUCEE- Li study. Indian

Heart Journal, 73(6), 674–681.

https://doi.org/10.1016/j.ihj.2021.10.002

Gustafson, K. A., Rowe, C., Gavaza, P., Bernknopf, A., Nogid, A., Hoffman,

A., Jones, E., Showman, L., Miller, V., Abdel Aziz, M. H., Brand-

Eubanks, D., Do, D. P., Berman, S., Chu, A., Dave, V., Devraj, R.,

Hintze, T. D., Munir, F., Mohamed, I., ... Southwood, R. (2025).

Pharmacists’ perceptions of artificial intelligence: A national survey.

Journal of the American Pharmacists Association, 65(1), 102306.

https://doi.org/10.1016/j.japh.2024.102306

Huo, W., Li, Q., Liang, B., Wang, Y., & Li, X. (2025). When Healthcare

Professionals Use AI: Exploring Work Well-Being Through Psychological Needs Satisfaction and Job Complexity. Behavioral

Sciences, 15(1), 88. https://doi.org/10.3390/bs15010088

Kloutsiniotis, P. V., Mihail, D. M., Mylonas, N., & Pateli, A. (2022).

Transformational Leadership, HRM practices and burnout during the

COVID-19 pandemic: The role of personal stress, anxiety, and

workplace loneliness. International Journal of Hospitality

Management, 102, 103177.

https://doi.org/10.1016/j.ijhm.2022.103177

Konlan, K. D., Asampong, E., Dako-Gyeke, P., & Glozah, F. N. (2022).

Burnout syndrome among healthcare workers during COVID-19

Pandemic in Accra, Ghana. PLOS ONE, 17(6), e0268404.

https://doi.org/10.1371/journal.pone.0268404

Kumaş, G., Öner Yalçin, S., & Öztunç, G. (2019). Onkoloji Hemşirelerinin

Tükenmişlik ve İş Doyumu Düzeyleri: Adana Örneği. Mersin

Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp

Dergisi, 9(2), 256–265. https://doi.org/10.31020/mutftd.550272

Laing, S., & Mercer, J. (2021). Improved preventive care clinical decision-

making efficiency: Leveraging a point-of-care clinical decision support

system. BMC Medical Informatics and Decision Making, 21(1), 315.

https://doi.org/10.1186/s12911-021-01675-8

Langlotz, C. P. (2019). Will Artificial Intelligence Replace Radiologists?

Radiology: Artificial Intelligence, 1(3), e190058.

https://doi.org/10.1148/ryai.2019190058

Laplante, S., Namazi, B., Kiani, P., Hashimoto, D. A., Alseidi, A., Pasten, M.,

Brunt, L. M., Gill, S., Davis, B., Bloom, M., Pernar, L., Okrainec, A.,

& Madani, A. (2023). Validation of an artificial intelligence platform

for the guidance of safe laparoscopic cholecystectomy. Surgical

Endoscopy, 37(3), 2260–2268. https://doi.org/10.1007/s00464-022-

09439-9

Li, L. (2023). Role of chatbots on gastroenterology: Let’s chat about the future.

Gastroenterology & Endoscopy, 1(3), 144–149.

https://doi.org/10.1016/j.gande.2023.06.002

Li, W., Tang, L. M., Montayre, J., Harris, C. B., West, S., & Antoniou, M.

(2024). Investigating Health and Well-Being Challenges Faced by an

Aging Workforce in the Construction and Nursing Industries:

Computational Linguistic Analysis of Twitter Data. Journal of Medical

Internet Research, 26, e49450. https://doi.org/10.2196/49450

Liao, C.-T., Tsay, S.-F., & Chen, H.-C. (2024). Exploring generative AI’s role

in alleviating nursing workload and burnout in Taiwan. Journal of the

Formosan Medical Association, 123(7), 736–737.

https://doi.org/10.1016/j.jfma.2024.02.003

Liu, H., Ding, N., Li, X., Chen, Y., Sun, H., Huang, Y., Liu, C., Ye, P., Jin, Z.,

Bao, H., & Xue, H. (2024). Artificial Intelligence and Radiologist

Burnout. JAMA Network Open, 7(11), e2448714.

https://doi.org/10.1001/jamanetworkopen.2024.48714

Mansor, M. F., Abu, N. H., Abashah, A. N., & Mohd Kassim, M. A. (2018).

Cost Reduction and Business Strategy Matters to Human Resource

Outsourcing? A Validation by HR Experts from Government Link Companies (GLC’s). MATEC Web of Conferences, 150, 05033.

https://doi.org/10.1051/matecconf/201815005033

Marković, S., Kostić, O., Terzić-Supic, Z., Tomic Mihajlovic, S., Milovanović,

J., Radovanovic, S., Zdravković, N., Stojić, V., Jovčić, L., Jocić-Pivač,

B., Tomić Lučić, A., Kostić, M., & Šorak, M. (2024). Exposure to

Stress and Burnout Syndrome in Healthcare Workers, Expert Workers,

Professional Associates, and Associates in Social Service Institutions.

Medicina, 60(3), 499. https://doi.org/10.3390/medicina60030499

Mascagni, P., Vardazaryan, A., Alapatt, D., Urade, T., Emre, T., Fiorillo, C.,

Pessaux, P., Mutter, D., Marescaux, J., Costamagna, G., Dallemagne,

B., & Padoy, N. (2022). Artificial Intelligence for Surgical Safety:

Automatic Assessment of the Critical View of Safety in Laparoscopic

Cholecystectomy Using Deep Learning. Annals of Surgery, 275(5),

955–961. https://doi.org/10.1097/SLA.0000000000004351

Mbunge, E., Muchemwa, B., Jiyane, S., & Batani, J. (2021). Sensors and

healthcare 5.0: Transformative shift in virtual care through emerging

digital health technologies. Global Health Journal, 5(4), 169–177.

https://doi.org/10.1016/j.glohj.2021.11.008

Meshram, R. (2023). The Role of Artificial Intelligence (AI) in Recruitment

and Selection of Employees in the Organisation. Russian Law Journal,

11(9s). https://doi.org/10.52783/rlj.v11i9s.1624

Miao, J., Thongprayoon, C., & Cheungpasitporn, W. (2024). Should Artificial

Intelligence Be Used for Physician Documentation to Reduce Burnout?

Kidney360, 5(5), 765–767.

https://doi.org/10.34067/KID.0000000000000430

Moryousef, J., Nadesan, P., Uy, M., Matti, D., & Guo, Y. (2025). Assessing

the efficacy and clinical utility of artificial intelligence scribes in

urology. Urology, 196, 12-17.

Nan, J., Herbert, M. S., Purpura, S., Henneken, A. N., Ramanathan, D., &

Mishra, J. (2024). Personalized Machine Learning-Based Prediction of

Wellbeing and Empathy in Healthcare Professionals. Sensors, 24(8),

2640. https://doi.org/10.3390/s24082640

Nawaz, N., Arunachalam, H., Pathi, B. K., & Gajenderan, V. (2024). The

adoption of artificial intelligence in human resources management

practices. International Journal of Information Management Data

Insights, 4(1), 100208. https://doi.org/10.1016/j.jjimei.2023.100208

Nguyen, O. K., Makam, A. N., Clark, C., Zhang, S., Xie, B., Velasco, F.,

Amarasingham, R., & Halm, E. A. (2016). Predicting all‐cause

readmissions using electronic health record data from the entire

hospitalization: Model development and comparison. Journal of

Hospital Medicine, 11(7), 473–480. https://doi.org/10.1002/jhm.2568

Noble, J. M., Zamani, A., Gharaat, M., Merrick, D., Maeda, N., Lambe Foster,

A., Nikolaidis, I., Goud, R., Stroulia, E., Agyapong, V. I. O.,

Greenshaw, A. J., Lambert, S., Gallson, D., Porter, K., Turner, D., &

Zaiane, O. (2022). Developing, Implementing, and Evaluating an

Artificial Intelligence–Guided Mental Health Resource Navigation

Chatbot for Health Care Workers and Their Families During and

Following the COVID-19 Pandemic: Protocol for a Cross-sectional Study. JMIR Research Protocols, 11(7), e33717.

https://doi.org/10.2196/33717

Omranian, S., He, L., Talsma, A., Scoglio, A. A. J., McRoy, S., & Rich-

Edwards, J. W. (2025). Using Large Language Models to Assess

Burnout Among Health Care Workers in the Context of COVID-19

Vaccine Decisions and Health Beliefs: Retrospective Cohort Study.

JMIR Nursing, 8, e73672–e73672. https://doi.org/10.2196/73672

Owens, L. M., Wilda, J. J., Hahn, P. Y., Koehler, T., & Fletcher, J. J. (2024).

The association between use of ambient voice technology

documentation during primary care patient encounters, documentation

burden, and provider burnout. Family Practice, 41(2), 86–91.

https://doi.org/10.1093/fampra/cmad092

Pavuluri, S., Sangal, R., Sather, J., & Taylor, R. A. (2024). Balancing act: The

complex role of artificial intelligence in addressing burnout and

healthcare workforce dynamics. BMJ Health & Care Informatics,

31(1), e101120. https://doi.org/10.1136/bmjhci-2024-101120

Petry, M., Lansky, C., Chodakiewitz, Y., Maya, M., & Pressman, B. (2022).

Decreased Hospital Length of Stay for ICH and PE after Adoption of

an Artificial Intelligence-Augmented Radiological Worklist Triage

System. Radiology Research and Practice, 2022, 1–7.

https://doi.org/10.1155/2022/2141839

Raisa, J. F., Rahman, Md. S., Mahmud, I., Kaiser, M. S., & Han, D. S. (2025).

Transition toward Healthcare 5.0: Impact of COVID-19 in the

healthcare industry. ICT Express, 11(3), 371–389.

https://doi.org/10.1016/j.icte.2025.04.002

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Liu, P. J., Liu, X.,

Sun, M., Sundberg, P., Yee, H., Zhang, K., Duggan, G. E., Flores, G.,

Hardt, M., Irvine, J., Le, Q., Litsch, K., Marcus, J., Mossin, A., ... Dean,

J. (2018). Scalable and accurate deep learning for electronic health

records. Npj Digital Medicine, 1(1), 18.

https://doi.org/10.1038/s41746-018-0029-1

Renggli, F. J., Gerlach, M., Bieri, J. S., Golz, C., & Sariyar, M. (2025).

Integrating Nurse Preferences Into AI-Based Scheduling Systems:

Qualitative Study. JMIR Formative Research, 9, e67747–e67747.

https://doi.org/10.2196/67747

Sarker, I. H. (2022). AI-Based Modeling: Techniques, Applications and

Research Issues Towards Automation, Intelligent and Smart Systems.

SN Computer Science, 3(2), 158. https://doi.org/10.1007/s42979-022-

01043-x

Sarraf, B., & Ghasempour, A. (2025). Impact of artificial intelligence on

electronic health record-related burnouts among healthcare

professionals: Systematic review. Frontiers in Public Health, 13,

1628831. https://doi.org/10.3389/fpubh.2025.1628831

Shah, S. J., Devon-Sand, A., Ma, S. P., Jeong, Y., Crowell, T., Smith, M.,

Liang, A. S., Delahaie, C., Hsia, C., Shanafelt, T., Pfeffer, M. A., Sharp,

C., Lin, S., & Garcia, P. (2025). Ambient artificial intelligence scribes:

Physician burnout and perspectives on usability and documentationburden. Journal of the American Medical Informatics Association,

32(2), 375–380. https://doi.org/10.1093/jamia/ocae295

Vafaeezadeh, M., Behnam, H., Hosseinsabet, A., & Gifani, P. (2021). A deep

learning approach for the automatic recognition of prosthetic mitral

valve in echocardiographic images. Computers in Biology and

Medicine, 133, 104388.

Van Leeuwen, K. G., Meijer, F. J. A., Schalekamp, S., Rutten, M. J. C. M.,

Van Dijk, E. J., Van Ginneken, B., Govers, T. M., & De Rooij, M.

(2021). Cost-effectiveness of artificial intelligence aided vessel

occlusion detection in acute stroke: An early health technology

assessment. Insights into Imaging, 12(1), 133.

https://doi.org/10.1186/s13244-021-01077-4

Van Zyl-Cillié, M. M., Bührmann, J. H., Blignaut, A. J., Demirtas, D., &

Coetzee, S. K. (2024). A machine learning model to predict the risk

factors causing feelings of burnout and emotional exhaustion amongst

nursing staff in South Africa. BMC Health Services Research, 24(1),

1665. https://doi.org/10.1186/s12913-024-12184-5

Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X., Doshi-Velez, F.,

Jung, K., Heller, K., Kale, D., Saeed, M., Ossorio, P. N., Thadaney-

Israni, S., & Goldenberg, A. (2019). Do no harm: A roadmap for

responsible machine learning for health care. Nature Medicine, 25(9),

1337–1340. https://doi.org/10.1038/s41591-019-0548-6

Xie, Y., Zhai, Y., & Lu, G. (2025). Evolution of artificial intelligence in

healthcare: A 30-year bibliometric study. Frontiers in Medicine, 11,

1505692. https://doi.org/10.3389/fmed.2024.1505692

Ziegelmayer, S., Graf, M., Makowski, M., Gawlitza, J., & Gassert, F. (2022).

Cost-Effectiveness of Artificial Intelligence Support in Computed

Tomography-Based Lung Cancer Screening. Cancers, 14(7), 1729.

https://doi.org/10.3390/cancers14071729

Downloads

Published

2025-10-29

How to Cite

Issalillah, F., Khayru, R. K., & Darmawan, D. (2025). Enhancing Human Resource Management in Healthcare: Integrating AI for Improved Work Efficiency and Reduced Burnout. Proceeding of International Management Conference and Progressive Papers, 3(1). Retrieved from https://proceeding.unesa.ac.id/index.php/immersive/article/view/6969

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.